1
|
Kraina P, Česnek M, Tloušťová E, Mertlíková-Kaiserová H, Fulton CJ, Davidson EK, Smith BP, Watts VJ, Janeba Z. Discovery of a potent and selective human AC2 inhibitor based on 7-deazapurine analogues of adefovir. Bioorg Med Chem 2023; 95:117508. [PMID: 37931521 PMCID: PMC10842932 DOI: 10.1016/j.bmc.2023.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Collapse
Affiliation(s)
- Pavel Kraina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic; Department of Organic Chemistry, University of Chemistry and Technology Prague, 16628 Prague 6, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic
| | - Camryn J Fulton
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Emily K Davidson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brenton P Smith
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Jiang D, Min Z, Leng J, Niu H, Chen Y, Liu D, Zhu C, Li M, Zhuang W, Ying H. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Seok JY, Han YH, Yang JS, Yang J, Lim HG, Kim SG, Seo SW, Jung GY. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Rep 2021; 36:109589. [PMID: 34433019 DOI: 10.1016/j.celrep.2021.109589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae-Seong Yang
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
4
|
Le VVH, Biggs PJ, Wheeler D, Davies IG, Rakonjac J. Novel mechanisms of TolC-independent decreased bile-salt susceptibility in Escherichia coli. FEMS Microbiol Lett 2021; 367:5837082. [PMID: 32407499 DOI: 10.1093/femsle/fnaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023] Open
Abstract
Bile salts, including sodium deoxycholate (DOC), are secreted into the intestine to aid fat digestion and contribute to antimicrobial protection. Gram-negative pathogens such as Escherichia coli, however, are highly resistant to DOC, using multiple mechanisms of which the multidrug efflux pump AcrAB-TolC is the dominant one. Given that TolC-mediated efflux masks the interaction of DOC with potential targets, we sought to identify those targets by identifying genes whose mutations cause an increase in the MIC to DOC relative to the ∆tolC parental strain, that lacks TolC-associated functional efflux pumps. Using a mutant screen, we isolated twenty independent spontaneous mutants that had a higher MICDOC than the E. coli parental ∆tolC strain. Whole genome sequencing of these mutants mapped most mutations to the ptsI or cyaA gene. Analysis of knock-out mutants and complementation showed that elimination of PtsI, a component of the carbohydrate phosphotransferase system, or one of the two key proteins involved in cAMP synthesis and signaling, adenylate cyclase (CyaA) or cAMP receptor protein (Crp) causes low-level increased resistance of a ∆tolC E. coli strain to DOC.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,mEpilab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David Wheeler
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ieuan G Davies
- New Zealand Pharmaceuticals Ltd., Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Jeong SH, Park JB, Wang Y, Kim GH, Zhang G, Wei G, Wang C, Kim SW. Regulatory molecule cAMP changes cell fitness of the engineered Escherichia coli for terpenoids production. Metab Eng 2020; 65:178-184. [PMID: 33246165 DOI: 10.1016/j.ymben.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
Terpenoids are a class of natural compounds with many important functions and applications. They are synthesized from a long synthetic pathway of isoprenyl unit coupling with the myriads of terpene synthases. Owing to the catalytic divergence of terpenoids synthesis, microbial production of terpenoids is compromised to the complexity of pathway engineering and suffers from the metabolic engineering burden. In this work, the adaptive Escherichia coli HP variant exhibited a general cell fitness in terpenoid synthesis. Especially, it could yield taxadiene of 193.2 mg/L in a test tube culture, which is a five-fold increase over the production in the wild type E. coli DH5α. Mutational analyses indicated that IS10 insertion in adenylate cyclase CyaA (CyaAHP) resulted in lowering intracellular cyclic AMP (cAMP), which could regulate its receptor protein CRP to rewire cell metabolism and contributed to the improved cell fitness. Our results suggested a way to manipulate cell fitness for terpenoids production and other products.
Collapse
Affiliation(s)
- Seong-Hee Jeong
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Yan Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gye-Hwan Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
6
|
Efficient production of cyclic adenosine monophosphate from adenosine triphosphate by the N-terminal half of adenylate cyclase from Escherichia coli. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria. J Biol Chem 2017; 292:313-327. [PMID: 27881678 PMCID: PMC5217690 DOI: 10.1074/jbc.m116.758896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3',5'-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme.
Collapse
Affiliation(s)
- Yong Zhang
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rym Agrebi
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Lauren E Bellows
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium, and
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angelika Gründling
- From the Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
8
|
Linder JU. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module. PLoS One 2015; 10:e0141843. [PMID: 26512893 PMCID: PMC4626032 DOI: 10.1371/journal.pone.0141843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1-10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain.
Collapse
|
9
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cloning, expression, and characterization of an adenylate cyclase from Arthrobacter sp. CGMCC 3584. Appl Microbiol Biotechnol 2012; 96:963-70. [DOI: 10.1007/s00253-012-3890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
|
11
|
Tresguerres M, Buck J, Levin LR. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 2010; 460:953-64. [PMID: 20683624 DOI: 10.1007/s00424-010-0865-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 12/20/2022]
Abstract
In biological systems, carbon dioxide exists in equilibrium with bicarbonate and protons. The individual components of this equilibrium (i.e., CO₂, HCO₃⁻, and H(+)), which must be sensed to be able to maintain cellular and organismal pH, also function as signals to modulate multiple physiological functions. Yet, the molecular sensors for CO₂/HCO₃⁻/pH remained unknown until recently. Here, we review recent progress in delineating molecular and cellular mechanisms for sensing CO₂, HCO₃⁻, and pH.
Collapse
Affiliation(s)
- Martin Tresguerres
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, USA
| | | | | |
Collapse
|