1
|
Wang H, Chen M, Yang C, Hu H, Jiang Y, Yang F, Lv L. SNRPD1 inhibition suppresses the proliferation of hepatocellular carcinoma and promotes autophagy through the PI3K/AKT/mTOR/4EBP1 pathway. Arch Biochem Biophys 2023; 743:109661. [PMID: 37268273 DOI: 10.1016/j.abb.2023.109661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Small nuclear ribonucleoprotein Sm D1 (SNRPD1) has been reported as an oncogene in some solid cancers. Our previous study suggested that SNRPD1 has diagnostic and prognostic value in hepatocellular carcinoma (HCC), but its role in tumor growth and biological behavior remains unknown. In this study, we aimed to unravel the role and mechanism of SNRPD1 in HCC. METHODS We investigated the SNRPD1 mRNA level in adjacent normal liver tissues and HCC tissues with different tumor stages in the UALCAN database. The associations between SNRPD1 mRNA expression and HCC prognosis were investigated in TCGA database. Then, 52 pairs of frozen HCC tissues and corresponding adjacent normal liver tissues were collected to perform qPCR and immunohistochemistry assay. Next, we carried out a series of experiments in vitro and in vivo to investigate the effects of SNRPD1 expression on cell invasion, migration, proliferation, autophagy, and the PI3K/AKT/mTOR pathway. RESULTS The bioinformatics analysis and qPCR in our patient cohort demonstrated that the SNRPD1 mRNA level in HCC tissues was higher than in adjacent normal tissues. In addition, the immunohistochemistry assay exhibited an increased SNRPD1 protein level with the tumor stage increase. Survival analysis suggested that higher expression of SNRPD1 was significantly associated with unfavorable prognosis of patients with HCC. The functional experiments in vitro indicated that SNRPD1 knockdown suppressed the cellular proliferation, migration, and invasion capacities. Furthermore, SNRPD1 inhibition induced cellular apoptosis and arrested the HCC cells at the G0/G1 phase of the cell cycle. Mechanistic analyses demonstrated that SNRPD1 knockdown induced the increase of autophagic vacuoles and the expression of autophagy-related genes (ATG5, ATG7, and ATG12) and blocked the PI3K/AKT/mTOR/4EBP1 pathway in vitro. Moreover, SNRPD1 inhibition suppressed tumor growth and expression of the Ki67 protein in vivo. CONCLUSIONS SNRPD1 may serve as an oncogene in HCC and promote tumor proliferation via inhibiting autophagy induced through the PI3K/Akt/mTOR/4EBP1 pathway.
Collapse
Affiliation(s)
- Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistic Team, Fuzhou, Fujian, 350025, China.
| | - Minyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, Fujian, 350025, China
| | - Chengkai Yang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Huanzhang Hu
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Yi Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Fang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Lizhi Lv
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, Hubei, 442000, China; The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China.
| |
Collapse
|
2
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
3
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
4
|
Wan R, Bai R, Shi Y. Molecular choreography of pre-mRNA splicing by the spliceosome. Curr Opin Struct Biol 2019; 59:124-133. [PMID: 31476650 DOI: 10.1016/j.sbi.2019.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
The spliceosome executes eukaryotic precursor messenger RNA (pre-mRNA) splicing to remove noncoding introns through two sequential transesterification reactions, branching and exon ligation. The fidelity of this process is based on the recognition of the conserved sequences in the intron and dynamic compositional and structural rearrangement of this multi-megadalton machinery. Since atomic visualization of the splicing active site in an endogenous Schizosaccharomyces pombe spliceosome in 2015, high-resolution cryoelectron microscopy (cryo-EM) structures of other spliceosome intermediates began to uncover the molecular mechanism. Recent advances in the structural biology of the spliceosome make it clearer the mechanisms of its assembly, activation, disassembly and exon ligation. Together, these discrete structural images give rise to a molecular choreography of the spliceosome.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
5
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Méheust R, Bhattacharya D, Pathmanathan JS, McInerney JO, Lopez P, Bapteste E. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol 2018. [PMID: 29534719 PMCID: PMC5851275 DOI: 10.1186/s12915-018-0500-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Eukaryotes evolved from the symbiotic association of at least two prokaryotic partners, and a good deal is known about the timings, mechanisms, and dynamics of these evolutionary steps. Recently, it was shown that a new class of nuclear genes, symbiogenetic genes (S-genes), was formed concomitant with endosymbiosis and the subsequent evolution of eukaryotic photosynthetic lineages. Understanding their origins and contributions to eukaryogenesis would provide insights into the ways in which cellular complexity has evolved. RESULTS Here, we show that chimeric nuclear genes (S-genes), built from prokaryotic domains, are critical for explaining the leap forward in cellular complexity achieved during eukaryogenesis. A total of 282 S-gene families contributed solutions to many of the challenges faced by early eukaryotes, including enhancing the informational machinery, processing spliceosomal introns, tackling genotoxicity within the cell, and ensuring functional protein interactions in a larger, more compartmentalized cell. For hundreds of S-genes, we confirmed the origins of their components (bacterial, archaeal, or generally prokaryotic) by maximum likelihood phylogenies. Remarkably, Bacteria contributed nine-fold more S-genes than Archaea, including a two-fold greater contribution to informational functions. Therefore, there is an additional, large bacterial contribution to the evolution of eukaryotes, implying that fundamental eukaryotic properties do not strictly follow the traditional informational/operational divide for archaeal/bacterial contributions to eukaryogenesis. CONCLUSION This study demonstrates the extent and process through which prokaryotic fragments from bacterial and archaeal genes inherited during eukaryogenesis underly the creation of novel chimeric genes with important functions.
Collapse
Affiliation(s)
- Raphaël Méheust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jananan S Pathmanathan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, M13 9PL, Manchester, UK
| | - Philippe Lopez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France.
| |
Collapse
|
7
|
Volanakis A, Passoni M, Hector RD, Shah S, Kilchert C, Granneman S, Vasiljeva L. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes Dev 2013; 27:2025-38. [PMID: 24065768 PMCID: PMC3792478 DOI: 10.1101/gad.221960.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery. We demonstrate that SMD can significantly down-regulate mRNA levels; splicing at canonical splice sites in the bromodomain factor 2 (BDF2) transcript reduced transcript levels roughly threefold by generating unstable products that are rapidly degraded by the nuclear surveillance machinery. Regulation of BDF2 mRNA levels by SMD requires Bdf1, a functionally redundant Bdf2 paralog that plays a role in recruiting the spliceosome to the BDF2 mRNA. Interestingly, mutating BDF2 5' splice site and branch point consensus sequences partially suppresses the bdf1Δ temperature-sensitive phenotype, suggesting that maintaining proper levels of Bdf2 via SMD is biologically important. We propose that the spliceosome can also repress protein-coding gene expression by promoting nuclear turnover of spliced RNA products and provide an insight for coordinated regulation of Bdf1 and Bdf2 levels in the cell.
Collapse
Affiliation(s)
- Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, Will CL, Pena V, Lührmann R, Stelzl U. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell 2012; 45:567-80. [PMID: 22365833 DOI: 10.1016/j.molcel.2011.12.034] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/01/2011] [Accepted: 12/12/2011] [Indexed: 12/12/2022]
Abstract
More than 200 proteins copurify with spliceosomes, the compositionally dynamic RNPs catalyzing pre-mRNA splicing. To better understand protein - protein interactions governing splicing, we systematically investigated interactions between human spliceosomal proteins. A comprehensive Y2H interaction matrix screen generated a protein interaction map comprising 632 interactions between 196 proteins. Among these, 242 interactions were found between spliceosomal core proteins and largely validated by coimmunoprecipitation. To reveal dynamic changes in protein interactions, we integrated spliceosomal complex purification information with our interaction data and performed link clustering. These data, together with interaction competition experiments, suggest that during step 1 of splicing, hPRP8 interactions with SF3b proteins are replaced by hSLU7, positioning this second step factor close to the active site, and that the DEAH-box helicases hPRP2 and hPRP16 cooperate through ordered interactions with GPKOW. Our data provide extensive information about the spliceosomal protein interaction network and its dynamics.
Collapse
Affiliation(s)
- Anna Hegele
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saha D, Khandelia P, O'Keefe RT, Vijayraghavan U. Saccharomyces cerevisiae NineTeen complex (NTC)-associated factor Bud31/Ycr063w assembles on precatalytic spliceosomes and improves first and second step pre-mRNA splicing efficiency. J Biol Chem 2012; 287:5390-9. [PMID: 22215661 DOI: 10.1074/jbc.m111.298547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a ∼25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.
Collapse
Affiliation(s)
- Debjani Saha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
10
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
11
|
Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, Gould KL. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719. [PMID: 21386897 PMCID: PMC3046128 DOI: 10.1371/journal.pone.0016719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Collapse
Affiliation(s)
- Liping Ren
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janel R. McLean
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tony R. Hazbun
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Craig Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H, Lührmann R. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA (NEW YORK, N.Y.) 2010; 16:2384-403. [PMID: 20980672 PMCID: PMC2995400 DOI: 10.1261/rna.2456210] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To better understand the compositional and structural dynamics of the human spliceosome during its activation, we set out to isolate spliceosomal complexes formed after precatalytic B but prior to catalytically active C complexes. By shortening the polypyrimidine tract of the PM5 pre-mRNA, which lacks a 3' splice site and 3' exon, we stalled spliceosome assembly at the activation stage. We subsequently affinity purified human B(act) complexes under the same conditions previously used to isolate B and C complexes, and analyzed their protein composition by mass spectrometry. A comparison of the protein composition of these complexes allowed a fine dissection of compositional changes during the B to B(act) and B(act) to C transitions, and comparisons with the Saccharomyces cerevisiae B(act) complex revealed that the compositional dynamics of the spliceosome during activation are largely conserved between lower and higher eukaryotes. Human SF3b155 and CDC5L were shown to be phosphorylated specifically during the B to B(act) and B(act) to C transition, respectively, suggesting these modifications function at these stages of splicing. The two-dimensional structure of the human B(act) complex was determined by electron microscopy, and a comparison with the B complex revealed that the morphology of the human spliceosome changes significantly during its activation. The overall architecture of the human and S. cerevisiae B(act) complex is similar, suggesting that many of the higher order interactions among spliceosomal components, as well as their dynamics, are also largely conserved.
Collapse
Affiliation(s)
- Sergey Bessonov
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
14
|
Lardelli RM, Thompson JX, Yates JR, Stevens SW. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2010; 16:516-28. [PMID: 20089683 PMCID: PMC2822917 DOI: 10.1261/rna.2030510] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/11/2009] [Indexed: 05/03/2023]
Abstract
Eukaryotic pre-mRNA splicing is a complex process requiring the precise timing and action of >100 trans-acting factors. It has been known for some time that the two steps of splicing chemistry require three DEAH-box RNA helicase-like proteins; however, their mechanism of action at these steps has remained elusive. Spliceosomes arrested in vivo at the three helicase checkpoints were purified, and first step-arrested spliceosomes were functionally characterized. We show that the first step of splicing requires a novel ATP-independent conformational change. Prp2p then catalyzes an ATP-dependent rearrangement displacing the SF3a and SF3b complexes from the branchpoint within the spliceosome. We propose a model in which SF3 prevents premature nucleophilic attack of the chemically reactive hydroxyl of the branchpoint adenosine prior to the first transesterification. When the spliceosome attains the proper conformation and upon the function of Prp2p, SF3 is displaced from the branchpoint allowing first step chemistry to occur.
Collapse
Affiliation(s)
- Rea M Lardelli
- Graduate Program, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
15
|
Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Lührmann R. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 2009; 36:593-608. [PMID: 19941820 DOI: 10.1016/j.molcel.2009.09.040] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/14/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023]
Abstract
Metazoan spliceosomes exhibit an elaborate protein composition required for canonical and alternative splicing. Thus, the minimal set of proteins essential for activation and catalysis remains elusive. We therefore purified in vitro assembled, precatalytic spliceosomal complex B, activated B(act), and step 1 complex C from the simple eukaryote Saccharomyces cerevisiae. Mass spectrometry revealed that yeast spliceosomes contain fewer proteins than metazoans and that each functional stage is very homogeneous. Dramatic compositional changes convert B to B(act), which is composed of approximately 40 evolutionarily conserved proteins that organize the catalytic core. Additional remodeling occurs concomitant with step 1, during which nine proteins are recruited to form complex C. The moderate number of proteins recruited to complex C will allow investigations of the chemical reactions in a fully defined system. Electron microscopy reveals high-quality images of yeast spliceosomes at defined functional stages, indicating that they are well-suited for three-dimensional structure analyses.
Collapse
Affiliation(s)
- Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Kawashima T, Pellegrini M, Chanfreau GF. Nonsense-mediated mRNA decay mutes the splicing defects of spliceosome component mutations. RNA (NEW YORK, N.Y.) 2009; 15:2236-2247. [PMID: 19850912 PMCID: PMC2779665 DOI: 10.1261/rna.1736809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
The role of many splicing factors in pre-mRNA splicing and the involvement of these factors in the processing of specific transcripts have often been defined through the analysis of loss-of-function mutants in vivo. Here we show that inactivating the nonsense-mediated mRNA decay (NMD) results in an enhancement of splicing phenotypes associated with several S. cerevisiae splicing factor mutations. Tiling microarrays showed that inactivation of the NMD factor Upf1p in the prp17Delta and prp18Delta mutant strains results in a larger spectrum of splicing defects than what is observed in the single mutants, including new transcripts previously shown unaffected by Prp17p or Prp18p inactivation. Inactivation of Upf1p in the second step/recycling factor prp22-1 mutant and in the nam8Delta and mud1Delta U1 snRNP component mutants also increase unspliced precursor accumulation of several specific transcripts. In addition, deletion of UPF1 partially suppresses the growth defects associated with the prp17Delta or prp22-1 mutations, demonstrating a positive genetic interaction between NMD and splicing factor mutants. These results show that RNA surveillance by NMD can mask some of the effects of splicing factor mutations, and that the roles of splicing factors cannot be fully understood in vivo unless RNA degradation systems that degrade unspliced precursors are also inactivated.
Collapse
Affiliation(s)
- Tadashi Kawashima
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
17
|
Warkocki Z, Odenwälder P, Schmitzová J, Platzmann F, Stark H, Urlaub H, Ficner R, Fabrizio P, Lührmann R. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 2009; 16:1237-43. [PMID: 19935684 DOI: 10.1038/nsmb.1729] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/29/2009] [Indexed: 11/09/2022]
Abstract
The spliceosome is a ribonucleoprotein machine that removes introns from pre-mRNA in a two-step reaction. To investigate the catalytic steps of splicing, we established an in vitro splicing complementation system. Spliceosomes stalled before step 1 of this process were purified to near-homogeneity from a temperature-sensitive mutant of the RNA helicase Prp2, compositionally defined, and shown to catalyze efficient step 1 when supplemented with recombinant Prp2, Spp2 and Cwc25, thereby demonstrating that Cwc25 has a previously unknown role in promoting step 1. Step 2 catalysis additionally required Prp16, Slu7, Prp18 and Prp22. Our data further suggest that Prp2 facilitates catalytic activation by remodeling the spliceosome, including destabilizing the SF3a and SF3b proteins, likely exposing the branch site before step 1. Remodeling by Prp2 was confirmed by negative stain EM and image processing. This system allows future mechanistic analyses of spliceosome activation and catalysis.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|