1
|
Scherr F, Darisipudi MN, Börner FR, Austermeier S, Hoffmann F, Eberhardt M, Abdurrahman G, Saade C, von Eggeling F, Kasper L, Holtfreter S, Bröker BM, Kiehntopf M. Alpha-1-antitrypsin as novel substrate for S. aureus' Spl proteases - implications for virulence. Front Immunol 2024; 15:1481181. [PMID: 39628483 PMCID: PMC11611844 DOI: 10.3389/fimmu.2024.1481181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Background The serine protease like (Spl) proteases of Staphylococcus aureus are a family of six proteases whose function and impact on virulence are poorly understood. Here we propose alpha-1-antitrypsin (AAT), an important immunomodulatory serine protease inhibitor as target of SplD, E and F. AAT is an acute phase protein, interacting with many proteases and crucial for prevention of excess tissue damage by neutrophil elastase during the innate immune response to infections. Methods We used MALDI-TOF-MS to identify the cleavage site of Spl proteases within AAT's reactive center loop (RCL) and LC-MS/MS to quantify the resulting peptide cleavage product in in vitro digestions of AAT and heterologous expressed proteases or culture supernatants from different S. aureus strains. We further confirmed proteolytic cleavage and formation of a covalent complex with Western Blots, investigated AAT's inhibitory potential against Spls and examined the NETosis inhibitory activity of AAT-Spl-digestions. Results SplD, E and F, but not A or B, cleave AAT in its RCL, resulting in the release of a peptide consisting of AAT's C-terminal 36 amino acids (C36). Synthetic C36, as well as AAT-SplD/E/F-digestions exhibit NETosis inhibition. Only SplE, but not D or F, was partly inhibited by AAT, forming a covalent complex. Conclusion We unraveled a new virulence trait of S. aureus, where SplD/E/F cleave and inactivate AAT while the cleavage product C36 inhibits NETosis.
Collapse
Affiliation(s)
- Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | | | - Friedemann R. Börner
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Martin Eberhardt
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Saade
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| |
Collapse
|
2
|
De Donato DP, Effner R, Nordengrün M, Lechner A, Darisipudi MN, Volz T, Hagl B, Bröker BM, Renner ED. Staphylococcus aureus Serine protease-like protein A (SplA) induces IL-8 by keratinocytes and synergizes with IL-17A. Cytokine 2024; 180:156634. [PMID: 38810500 DOI: 10.1016/j.cyto.2024.156634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Serine protease-like (Spl) proteins produced by Staphylococcus (S.) aureus have been associated with allergic inflammation. However, effects of Spls on the epidermal immune response have not been investigated. OBJECTIVES To assess the epidermal immune response to SplA, SplD and SplE dependent on differentiation of keratinocytes and a Th2 or Th17 cytokine milieu. METHODS Human keratinocytes of healthy controls and a STAT3-hyper-IgE syndrome (STAT3-HIES) patient were cultured in different calcium concentrations in the presence of Spls and Th2 or Th17 cytokines. Keratinocyte-specific IL-8 production and concomitant migration of neutrophils were assessed. RESULTS SplE and more significantly SplA, induced IL-8 in keratinocytes. Suprabasal-like keratinocytes showed a higher Spl-mediated IL-8 production and neutrophil migration compared to basal-like keratinocytes. Th17 cytokines amplified Spl-mediated IL-8 production, which correlated with neutrophil recruitment. Neutrophil recruitment by keratinocytes of the STAT3-HIES patient was similar to healthy control cells. CONCLUSION S. aureus-specific Spl proteases synergized with IL-17A on human keratinocytes with respect to IL-8 release and neutrophil migration, highlighting the importance of keratinocytes and Th17 immunity in barrier function.
Collapse
Affiliation(s)
- D P De Donato
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Vascular Surgery, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - R Effner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M Nordengrün
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - A Lechner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - M N Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - T Volz
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - B Hagl
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany
| | - B M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - E D Renner
- Translational Immunology in Environmental Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany; Translational Immunology, Faculty of Medicine, University of Augsburg, Germany; Department of Pediatrics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Fu T, Fan Z, Li Y, Li Z, Zhao H, Feng Y, Xue G, Cui J, Yan C, Gan L, Feng J, Yuan J, You F. Roles of the Crp/Fnr Family Regulator ArcR in the Hemolysis and Biofilm of Staphylococcus aureus. Microorganisms 2023; 11:1656. [PMID: 37512829 PMCID: PMC10384999 DOI: 10.3390/microorganisms11071656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen that is often involved in severe infections such as pneumonia and sepsis in which bacterial virulence factors play a key role. Infections caused by S. aureus are often difficult to eradicate, particularly when they are associated with biofilm. The physiological roles of the Crp/Fnr family regulator ArcR are elusive in S. aureus. In this study, it was found that the deletion of arcR increased the hemolytic ability and biofilm formation in S. aureus. Differential gene expression analysis by RNA-seq and real-time quantitative reverse transcription PCR showed that genes associated with hemolytic ability (hla and hlb) and biofilm formation (icaA, icaB, icaC and icaD) were significantly upregulated compared with those in the wild-type strain. The results revealed that ArcR regulated the expression of the hla and ica operon by binding to their promoter regions, respectively. This study provided new insights into the functional importance of ArcR in regulating the virulence and biofilm of S. aureus.
Collapse
Affiliation(s)
- Tongtong Fu
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujie Li
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
| |
Collapse
|
5
|
Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture. Nat Commun 2023; 14:768. [PMID: 36765057 PMCID: PMC9918453 DOI: 10.1038/s41467-023-36099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Tailoring of the activity and specificity of proteases is critical for their utility across industrial, medical and research purposes. However, engineering or evolving protease catalysts is challenging and often labour intensive. Here, we describe a generic method to accelerate this process based on yeast display. We introduce the protease selection system A2Mcap that covalently captures protease catalysts by repurposed alpha-2-macroglobulin (A2Ms). To demonstrate the utility of A2Mcap for protease engineering we exemplify the directed activity and specificity evolution of six serine proteases. This resulted in a variant of Staphylococcus aureus serin-protease-like (Spl) protease SplB, an enzyme used for recombinant protein processing, that no longer requires activation by N-terminal signal peptide removal. SCHEMA-based domain shuffling was used to map the specificity determining regions of Spl proteases, leading to a chimeric scaffold that supports specificity switching via subdomain exchange. The ability of A2Mcap to overcome key challenges en route to tailor-made proteases suggests easier access to such reagents in the future.
Collapse
|
6
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
7
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2022.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
8
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2023.2595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 03/07/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|
9
|
The protease SplB of Staphylococcus aureus targets host complement components and inhibits complement-mediated bacterial opsonophagocytosis. J Bacteriol 2021; 204:e0018421. [PMID: 34633872 PMCID: PMC8765433 DOI: 10.1128/jb.00184-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host’s immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.
Collapse
|
10
|
Structural Determinants of Substrate Specificity of SplF Protease from Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22042220. [PMID: 33672341 PMCID: PMC7926377 DOI: 10.3390/ijms22042220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.
Collapse
|
11
|
Abstract
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.
Collapse
|
12
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
13
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2018; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
|
15
|
Murphy J, Ramezanpour M, Stach N, Dubin G, Psaltis AJ, Wormald PJ, Vreugde S. Staphylococcus Aureus V8 protease disrupts the integrity of the airway epithelial barrier and impairs IL-6 production in vitro. Laryngoscope 2017; 128:E8-E15. [PMID: 28994126 DOI: 10.1002/lary.26949] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Staphylococcus aureus (S. aureus) infection is known to contribute to the severity and recalcitrance of chronic rhinosinusitis (CRS), and its secreted products have been shown to alter the airway barrier. Extracellular proteases secreted by S. aureus are thought to be important in epithelial infection and immune evasion; however, their effect on airway mucosal barrier function is not known. METHODS To investigate the impact of extracellular proteases on airway epithelial integrity, the purified S. aureus proteases V8 protease, Staphopain A, Staphopain B, Exfoliative toxin A, and serine protease-like A-F were applied to human nasal epithelial cell air-liquid interface (HNEC-ALI) cultures. Transepithelial electrical resistance (TEER), permeability (Papp) measurements, and immuno-localization of the tight junction proteins claudin-1 and ZO-1 were used to assess barrier integrity. Effects of the proteases on inflammation and cell viability were measured using interleukin-6 (IL-6) ELISA and a lactate dehydrogenase assay. RESULTS Application of V8 protease to HNEC-ALI cultures caused a significant concentration and time-dependent decrease in TEER (22.67%, P < 0.0001), a reciprocal Papp increase (20.14-fold, P < 0.05), and a discontinuous ZO-1 immuno-localization compared to control. IL-6 production was significantly reduced in V8 protease-treated cells (153.5 pg/mL, P = 0.0069) compared to control (548.3 pg/mL), whereas no difference in cell viability was observed. CONCLUSION S. aureus V8 protease causes dysfunction of mucosal barrier structure and function indicative of a leaky barrier. A reduction in IL-6 levels suggests that the mucosal immunity is impaired by this protease and thus has the potential to contribute to CRS recalcitrance. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E8-E15, 2018.
Collapse
Affiliation(s)
- Jae Murphy
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Woodville South, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Woodville South, SA, Australia
| | - Natalia Stach
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Woodville South, SA, Australia
| |
Collapse
|
16
|
Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, Fernández-Hidalgo N, Gavaldà J, Almirante B, Chaves F. Pathogenic Characteristics of Staphylococcus aureus Endovascular Infection Isolates from Different Clonal Complexes. Front Microbiol 2017; 8:917. [PMID: 28579985 PMCID: PMC5437158 DOI: 10.3389/fmicb.2017.00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a major cause of bacteremia and, even with appropriate clinical management, causes high morbidity, and mortality due to its involvement in endovascular complications and metastatic infections. Through different pathogenic in vivo and in vitro models we investigated the behavior of S. aureus most relevant clonal complexes (CCs) causing endovascular complications. We analyzed 14 S. aureus strains representing CC5, CC8, CC15, CC30, and CC45 that caused endovascular complications, including methicillin susceptible and resistant isolates and strains with different functionality of the agr global regulator. Their adherence to collagen, interaction with the endothelium, resistance to immune attack, capacity to form biofilm and virulence in the Galleria mellonella model were analyzed. CC30 and CC45 showed greater adhesion to collagen and CC8 showed a trend towards higher rate of intracellular persistence in endothelial cells. All CCs exhibited similar tolerance to neutrophil antimicrobial peptide hNP-1 and were capable of forming biofilms under static conditions. The virulence assay in the G. mellonella model demonstrated that CC15 and CC30 were the most and least virulent, respectively. The analysis of the genomic sequences of the most relevant virulence genes identified some CC15 specific gene patterns (absence of enterotoxins and sak gene) and variants (mainly in leucocidins and proteases), but did not reveal any gene or variant that could be responsible for the increased virulence detected for CC15 strains. Even though all the CCs were capable of causing endovascular complications, our results showed that different CCs are likely to produce these complications through different mechanisms which, if confirmed in more sophisticated models, would indicate the need to more specific management and therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Pérez-Montarelo
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Esther Viedma
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Mercedes Murcia
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Irene Muñoz-Gallego
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nieves Larrosa
- Department of Microbiology, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Patricia Brañas
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| | - Nuria Fernández-Hidalgo
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Joan Gavaldà
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Benito Almirante
- Department of Infectious Diseases, Hospital Universitari Vall d'hebron, Universitat Autónoma de BarcelonaBarcelona, Spain
| | - Fernando Chaves
- Department of Microbiology, Instituto de Investigación Hospital de OctubreMadrid, Spain
| |
Collapse
|
17
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
18
|
The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia. mSphere 2016; 1:mSphere00208-16. [PMID: 27747296 PMCID: PMC5061998 DOI: 10.1128/msphere.00208-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCEStaphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins.
Collapse
|
19
|
Broach WH, Weiss A, Shaw LN. Transcriptomic analysis of staphylococcal sRNAs: insights into species-specific adaption and the evolution of pathogenesis. Microb Genom 2016; 2:e000065. [PMID: 28348860 PMCID: PMC5343137 DOI: 10.1099/mgen.0.000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Next-generation sequencing technologies have dramatically increased the rate at which new genomes are sequenced. Accordingly, automated annotation programs have become adept at identifying and annotating protein coding regions, as well as common and conserved RNAs. Additionally, RNAseq techniques have advanced our ability to identify and annotate regulatory RNAs (sRNAs), which remain significantly understudied. Recently, our group catalogued and annotated all previously known and newly identified sRNAs in several Staphylococcus aureus strains. These complete annotation files now serve as tools to compare the sRNA content of S. aureus with other bacterial strains to investigate the conservation of their sRNomes. Accordingly, in this study we performed RNAseq on two staphylococcal species, Staphylococcus epidermidis and Staphylococcus carnosus, identifying 118 and 89 sRNAs in these organisms, respectively. The sRNA contents of all three species were then compared to elucidate their common and species-specific sRNA content, identifying a core set of between 53 and 36 sRNAs encoded in each organism. In addition, we determined that S. aureus has the largest set of unique sRNAs (137) while S. epidermidishas the fewest (25). Finally, we identify a highly conserved sequence and structural motif differentially represented within, yet common to, both S. aureus and S. epidermidis. Collectively, in this study, we uncover the sRNome common to three staphylococcal species, shedding light on sRNAs that are likely to be involved in basic physiological processes common to the genus. More significantly, we have identified species-specific sRNAs that are likely to influence the individual lifestyle and behaviour of these diverse staphylococcal strains.
Collapse
Affiliation(s)
- William H Broach
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Andy Weiss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
20
|
Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K, Michalik S, Kumpfmüller J, Tischer S, Schweder T, Hecker M, Engelmann S, Völker U, Krysko O, Bachert C, Bröker BM. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 2016; 139:492-500.e8. [PMID: 27315768 DOI: 10.1016/j.jaci.2016.03.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND A substantial subgroup of asthmatic patients have "nonallergic" or idiopathic asthma, which often takes a severe course and is difficult to treat. The cause might be allergic reactions to the gram-positive pathogen Staphylococcus aureus, a frequent colonizer of the upper airways. However, the driving allergens of S aureus have remained elusive. OBJECTIVE We sought to search for potentially allergenic S aureus proteins and characterize the immune response directed against them. METHODS S aureus extracellular proteins targeted by human serum IgG4 were identified by means of immunoblotting to screen for potential bacterial allergens. Candidate antigens were expressed as recombinant proteins and used to analyze the established cellular and humoral immune responses in healthy adults and asthmatic patients. The ability to induce a type 2 immune response in vivo was tested in a mouse asthma model. RESULTS We identified staphylococcal serine protease-like proteins (Spls) as dominant IgG4-binding S aureus proteins. SplA through SplF are extracellular proteases of unknown function expressed by S aureus in vivo. Spls elicited IgE antibody responses in most asthmatic patients. In healthy S aureus carriers and noncarriers, peripheral blood T cells elaborated TH2 cytokines after stimulation with Spls, as is typical for allergens. In contrast, TH1/TH17 cytokines, which dominated the response to S aureus α-hemolysin, were of low concentration or absent. In mice inhalation of SplD without adjuvant induced lung inflammation characterized by TH2 cytokines and eosinophil infiltration. CONCLUSION We identify Spls as triggering allergens released by S aureus, opening prospects for diagnosis and causal therapy of asthma.
Collapse
Affiliation(s)
- Sebastian Stentzel
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Kolata
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany; Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Junior Group Applied Proteomics, ZIK FunGene, University Medicine Greifswald, Greifswald, Germany
| | | | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Junior Group Applied Proteomics, ZIK FunGene, University Medicine Greifswald, Greifswald, Germany
| | - Jana Kumpfmüller
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany; Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Sebastian Tischer
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany; Institute for Microbiology, University of Braunschweig, Braunschweig, Germany; Helmholtz Center for Infection Research, Microbial Proteomics, Braunschweig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Olga Krysko
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of Ear, Nose, and Throat Diseases, Clintec, Karolinska Institute, Stockholm, Sweden
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
21
|
Singh AK, Singh M, Pandya VK, G L B, Singh V, Ekka MK, Mittal M, Kumaran S. Molecular basis of peptide recognition in metallopeptidase Dug1p from Saccharomyces cerevisiae. Biochemistry 2014; 53:7870-83. [PMID: 25427234 DOI: 10.1021/bi501263u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.55 Å resolution in complex with a Gly-Cys dipeptide and two Zn(2+) ions. The dipeptide is trapped in the tunnel-like active site; its C-terminus is held by residues at the S1' binding pocket, whereas the S1 pocket coordinates Zn(2+) ions and the N-terminus of the peptide. Superposition with the carnosinase structure shows that peptide mimics the inhibitor bestatin, but active site features are altered upon peptide binding. The space occupied by the N-terminus of bestatin is left unoccupied in the Dug1p structure, suggesting that tripeptides could bind. Modeling of tripeptides into the Dug1p active site showed tripeptides fit well. Guided by the structure and modeling, we examined the ability of Dug1p to hydrolyze tripeptides, and results show that Dug1p hydrolyzes tripeptides selectively. Point mutations of catalytic residues do not abolish the peptide binding but abolish the hydrolytic activity, suggesting a noncooperative mode in peptide recognition. In summary, results reveal that peptides are recognized primarily through their amino and carboxyl termini, but hydrolysis depends on the properties of peptide substrates, dictated by their respective sequences. Structural similarity between the Dug1p-peptide complex and the bestatin-bound complex of CN2 suggests that the Dug1p-peptide structure can be used as a template for designing natural peptide inhibitors.
Collapse
Affiliation(s)
- Appu Kumar Singh
- G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR) , Sector 39A, Chandigarh 160036, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Peton V, Bouchard DS, Almeida S, Rault L, Falentin H, Jardin J, Jan G, Hernandez D, François P, Schrenzel J, Azevedo V, Miyoshi A, Berkova N, Even S, Le Loir Y. Fine-tuned characterization of Staphylococcus aureus Newbould 305, a strain associated with mild and chronic mastitis in bovines. Vet Res 2014; 45:106. [PMID: 25316113 PMCID: PMC4230361 DOI: 10.1186/s13567-014-0106-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 11/17/2022] Open
Abstract
S. aureus is a major aetiological agent of ruminant mastitis worldwide. The chronic nature of S. aureus mastitis makes it difficult to cure and prone to resurgence. In order to identify the bacterial factors involved in this chronicity, Newbould 305 (N305), a strain that can reproducibly induce mild and chronic mastitis in an experimental setting, was characterized in depth. We employed genomic and proteomic techniques combined with phenotype characterization, in order to comprehensively analyse N305. The results were compared with data obtained on S. aureus RF122, a strain representative of the major clone involved in severe bovine mastitis worldwide. Five mobile genetic elements were identified in the N305 genome as carrying virulence factors which correlated with phenotypic features such as cytotoxicity, mammary epithelial cell invasion or host-adaptation. In particular, the presence and characteristics of surface exposed proteins correlated well with the greater adhesion and internalization capacities of N305 in bovine mammary epithelial cells. N305 also displayed less diversity of toxin genes but secreted larger quantities of these toxins, associated with a higher cytotoxicity potential. Our data are consistent with the invasiveness and host-adaptation features which contribute to the chronicity of S. aureus mastitis. Mobile genetic elements, exoproteins and surface exposed proteins constitute good targets for further research to explore the underlying mechanisms related to mastitis chronicity.
Collapse
Affiliation(s)
- Vincent Peton
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Damien S Bouchard
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Sintia Almeida
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Lucie Rault
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Hélène Falentin
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Julien Jardin
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Gwénaël Jan
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - David Hernandez
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals (HUG), CH-1211, Geneva 14, Switzerland.
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Anderson Miyoshi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | - Nadia Berkova
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Sergine Even
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Yves Le Loir
- INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France. .,Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| |
Collapse
|
23
|
Genetic and molecular predictors of high vancomycin MIC in Staphylococcus aureus bacteremia isolates. J Clin Microbiol 2014; 52:3384-93. [PMID: 25031442 DOI: 10.1128/jcm.01320-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An elevated vancomycin MIC is associated with poor outcomes in Staphylococcus aureus bacteremia (SAB) and is reported in patients with methicillin-susceptible S. aureus (MSSA) bacteremia in the absence of vancomycin treatment. Here, using DNA microarray and phenotype analysis, we investigated the genetic predictors and accessory gene regulator (agr) function and their relationship with elevated vancomycin MIC using blood culture isolates from a multicenter binational cohort of patients with SAB. Specific clonal complexes were associated with elevated (clonal complex 8 [CC8] [P < 0.001]) or low (CC22 [P < 0.001], CC88 [P < 0.001], and CC188 [P = 0.002]) vancomycin MIC. agr dysfunction (P = 0.014) or agr genotype II (P = 0.043) were also associated with an elevated vancomycin MIC. Specific resistance and virulence genes were also linked to an elevated vancomycin MIC, including blaZ (P = 0.002), sea (P < 0.001), clfA (P < 0.001), splA (P = 0.001), and the arginine catabolic mobile element (ACME) locus (P = 0.02). These data suggest that inherent organism characteristics may explain the link between elevated vancomycin MICs and poor outcomes in patients with SAB, regardless of the antibiotic treatment received. A consideration of clonal specificity should be included in future research when attempting to ascertain treatment effects or clinical outcomes.
Collapse
|
24
|
Staphylococcus aureus mobile genetic elements. Mol Biol Rep 2014; 41:5005-18. [DOI: 10.1007/s11033-014-3367-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/04/2014] [Indexed: 01/13/2023]
|
25
|
Burchacka E, Zdzalik M, Niemczyk JS, Pustelny K, Popowicz G, Wladyka B, Dubin A, Potempa J, Sienczyk M, Dubin G, Oleksyszyn J. Development and binding characteristics of phosphonate inhibitors of SplA protease from Staphylococcus aureus. Protein Sci 2013; 23:179-89. [PMID: 24375505 DOI: 10.1002/pro.2403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus is responsible for a variety of human infections, including life-threatening, systemic conditions. Secreted proteome, including a range of proteases, constitutes the major virulence factor of the bacterium. However, the functions of individual enzymes, in particular SplA protease, remain poorly characterized. Here, we report development of specific inhibitors of SplA protease. The design, synthesis, and activity of a series of α-aminoalkylphosphonate diaryl esters and their peptidyl derivatives are described. Potent inhibitors of SplA are reported, which may facilitate future investigation of physiological function of the protease. The binding modes of the high-affinity compounds Cbz-Phe(P) -(OC6 H4 -4-SO2 CH3 )2 and Suc-Val-Pro-Phe(P) -(OC6 H5 )2 are revealed by high-resolution crystal structures of complexes with the protease. Surprisingly, the binding mode of both compounds deviates from previously characterized canonical interaction of α-aminoalkylphosphonate peptidyl derivatives and family S1 serine proteases.
Collapse
Affiliation(s)
- Ewa Burchacka
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zdzalik M, Kalinska M, Wysocka M, Stec-Niemczyk J, Cichon P, Stach N, Gruba N, Stennicke HR, Jabaiah A, Markiewicz M, Kedracka-Krok S, Wladyka B, Daugherty PS, Lesner A, Rolka K, Dubin A, Potempa J, Dubin G. Biochemical and structural characterization of SplD protease from Staphylococcus aureus. PLoS One 2013; 8:e76812. [PMID: 24130791 PMCID: PMC3793935 DOI: 10.1371/journal.pone.0076812] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/29/2013] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus is a dangerous human pathogen. A number of the proteins secreted by this bacterium are implicated in its virulence, but many of the components of its secretome are poorly characterized. Strains of S. aureus can produce up to six homologous extracellular serine proteases grouped in a single spl operon. Although the SplA, SplB, and SplC proteases have been thoroughly characterized, the properties of the other three enzymes have not yet been investigated. Here, we describe the biochemical and structural characteristics of the SplD protease. The active enzyme was produced in an Escherichia coli recombinant system and purified to homogeneity. P1 substrate specificity was determined using a combinatorial library of synthetic peptide substrates showing exclusive preference for threonine, serine, leucine, isoleucine, alanine, and valine. To further determine the specificity of SplD, we used high-throughput synthetic peptide and cell surface protein display methods. The results not only confirmed SplD preference for a P1 residue, but also provided insight into the specificity of individual primed- and non-primed substrate-binding subsites. The analyses revealed a surprisingly narrow specificity of the protease, which recognized five consecutive residues (P4-P3-P2-P1-P1’) with a consensus motif of R-(Y/W)-(P/L)-(T/L/I/V)↓S. To understand the molecular basis of the strict substrate specificity, we crystallized the enzyme in two different conditions, and refined the structures at resolutions of 1.56 Å and 2.1 Å. Molecular modeling and mutagenesis studies allowed us to define a consensus model of substrate binding, and illustrated the molecular mechanism of protease specificity.
Collapse
Affiliation(s)
- Michal Zdzalik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Kalinska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Justyna Stec-Niemczyk
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemyslaw Cichon
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Stach
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Gruba
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Abeer Jabaiah
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adam Dubin
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Center of Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
- * E-mail:
| |
Collapse
|
27
|
Chen C, Krishnan V, Macon K, Manne K, Narayana SVL, Schneewind O. Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. J Biol Chem 2013; 288:29440-52. [PMID: 23970550 PMCID: PMC3795244 DOI: 10.1074/jbc.m113.502039] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.
Collapse
Affiliation(s)
- Chen Chen
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| | | | | | | | | | | |
Collapse
|
28
|
Zdzalik M, Karim AY, Wolski K, Buda P, Wojcik K, Brueggemann S, Wojciechowski P, Eick S, Calander AM, Jonsson IM, Kubica M, Polakowska K, Miedzobrodzki J, Wladyka B, Potempa J, Dubin G. Prevalence of genes encoding extracellular proteases inStaphylococcus aureus— important targets triggering immune responsein vivo. ACTA ACUST UNITED AC 2012; 66:220-9. [DOI: 10.1111/j.1574-695x.2012.01005.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
29
|
Ewa B, Maciej W, Marcin S, Grzegorz D, Michał Z, Jan P, Józef O. The development of first Staphylococcus aureus SplB protease inhibitors: Phosphonic analogues of glutamine. Bioorg Med Chem Lett 2012; 22:5574-8. [DOI: 10.1016/j.bmcl.2012.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 11/27/2022]
|
30
|
Wildeboer D, Hill KE, Jeganathan F, Williams DW, Riddell AD, Price PE, Thomas DW, Stephens P, Abuknesha RA, Price RG. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. Eur J Clin Microbiol Infect Dis 2012; 31:2183-9. [DOI: 10.1007/s10096-012-1553-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/07/2012] [Indexed: 11/24/2022]
|
31
|
Jabaiah A, Daugherty PS. Directed evolution of protease beacons that enable sensitive detection of endogenous MT1-MMP activity in tumor cell lines. ACTA ACUST UNITED AC 2011; 18:392-401. [PMID: 21439484 DOI: 10.1016/j.chembiol.2010.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 11/24/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023]
Abstract
Directed evolution was applied to identify peptide substrates with enhanced hydrolysis rates by MT1-MMP suitable for protease beacon development. Screening of a random pentapeptide library, using two-color CLiPS, yielded several substrates identical to motifs in distinct collagens that shared the consensus sequence P-x-G↓L. To identify substrates with enhanced cleavage rates, a second-generation decapeptide library incorporating the consensus was screened under stringent conditions, which resulted in a MxPLG↓(M)/(L)M(G)/(A)R consensus motif. These substrates are hydrolyzed by human-MT1-MMP up to six times faster than reported peptide substrates and are stable in plasma. Finally, incubation of soluble protease beacons incorporating the optimized substrates, but not previous substrates, enabled direct detection of endogenous MT1-MMP activity of human-fibrosarcoma (HT-1080) cells. Extended substrate libraries coupled with CLiPS should be useful to generate more effective activity probes for a variety of proteolytic enzymes.
Collapse
Affiliation(s)
- Abeer Jabaiah
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
32
|
Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 2010; 67:3057-71. [PMID: 20668911 PMCID: PMC2929429 DOI: 10.1007/s00018-010-0389-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/06/2010] [Accepted: 04/26/2010] [Indexed: 01/30/2023]
Abstract
Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 USA
| |
Collapse
|
33
|
Boulware KT, Jabaiah A, Daugherty PS. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics. Biotechnol Bioeng 2010; 106:339-46. [PMID: 20148412 DOI: 10.1002/bit.22693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protease cleavage site recognition motifs can be identified using protease substrate discovery methodologies, but typically exhibit non-optimal specificity and activity. To enable evolutionary optimization of substrate cleavage kinetics, a two-color cellular library of peptide substrates (CLiPS) methodology was developed. Two-color CLiPS was applied to identify peptide substrates for the tobacco etch virus (TEV) protease from a random pentapeptide library, which were then optimized by screening of a focused, extended substrate library. Quantitative library screening yielded seven amino acid substrates exhibiting rapid hydrolysis by TEV protease and high sequence similarity to the native seven-amino-acid substrate, with a strong consensus of EXLYPhiQG. Comparison of hydrolysis rates for a family of closely related substrates indicates that the native seven-residue TEV substrate co-evolved with TEV protease to facilitate highly efficient hydrolysis. Consensus motifs revealed by screening enabled database identification of a family of related, putative viral protease substrates. More generally, our results suggest that substrate evolution using CLiPS may be useful for optimizing substrate selectivity and activity to enable the design of more effective protease activity probes, molecular imaging agents, and prodrugs.
Collapse
Affiliation(s)
- Kevin T Boulware
- Department of Chemical Engineering, University of California-Santa Barbara, 93106, USA
| | | | | |
Collapse
|