1
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
2
|
Reduction in Phosphoribulokinase Amount and Re-Routing Metabolism in Chlamydomonas reinhardtii CP12 Mutants. Int J Mol Sci 2022; 23:ijms23052710. [PMID: 35269851 PMCID: PMC8910624 DOI: 10.3390/ijms23052710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The chloroplast protein CP12 is involved in the dark/light regulation of the Calvin–Benson–Bassham cycle, in particular, in the dark inhibition of two enzymes: glyceraldehyde−3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), but other functions related to stress have been proposed. We knocked out the unique CP12 gene to prevent its expression in Chlamydomonas reinhardtii (ΔCP12). The growth rates of both wild-type and ΔCP12 cells were nearly identical, as was the GAPDH protein abundance and activity in both cell lines. On the contrary, the abundance of PRK and its specific activity were significantly reduced in ΔCP12, as revealed by relative quantitative proteomics. Isolated PRK lost irreversibly its activity over-time in vitro, which was prevented in the presence of recombinant CP12 in a redox-independent manner. We have identified amino acid residues in the CP12 protein that are required for this new function preserving PRK activity. Numerous proteins involved in redox homeostasis and stress responses were more abundant and the expressions of various metabolic pathways were also increased or decreased in the absence of CP12. These results highlight CP12 as a moonlighting protein with additional functions beyond its well-known regulatory role in carbon metabolism.
Collapse
|
3
|
Shao H, Huang W, Avilan L, Receveur-Bréchot V, Puppo C, Puppo R, Lebrun R, Gontero B, Launay H. A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Commun Signal 2021; 19:38. [PMID: 33761918 PMCID: PMC7992989 DOI: 10.1186/s12964-021-00718-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00718-x.
Collapse
Affiliation(s)
- Hui Shao
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Wenmin Huang
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Luisana Avilan
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | | - Carine Puppo
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Rémy Puppo
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Régine Lebrun
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Brigitte Gontero
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | - Hélène Launay
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
4
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
5
|
Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1140-1150. [PMID: 32275426 PMCID: PMC7386362 DOI: 10.1021/jasms.0c00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
Collapse
Affiliation(s)
| | - Elisa T Novelli
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Gulan N Xu
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Whitney A Fies
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
7
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
8
|
de Jesús Cázares-Marinero J, Przybylski C, Salmain M. Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| |
Collapse
|
9
|
Cryptic Disorder Out of Disorder: Encounter between Conditionally Disordered CP12 and Glyceraldehyde-3-Phosphate Dehydrogenase. J Mol Biol 2018; 430:1218-1234. [PMID: 29501381 DOI: 10.1016/j.jmb.2018.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/14/2023]
Abstract
Among intrinsically disordered proteins, conditionally disordered proteins undergo dramatic structural disorder rearrangements upon environmental changes and/or post-translational modifications that directly modulate their function. Quantifying the dynamics of these fluctuating proteins is extremely challenging but paramount to understanding the regulation of their function. The chloroplast protein CP12 is a model of such proteins and acts as a redox switch by formation/disruption of its two disulfide bridges. It regulates the Calvin cycle by forming, in oxidized conditions, a supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and then phosphoribulokinase. In this complex, both enzymes are inactive. The highly dynamic nature of CP12 has so far hindered structural characterization explaining its mode of action. Thanks to a synergistic combination of small-angle X-ray scattering, nuclear magnetic resonance and circular dichroism that drove the molecular modeling of structural ensembles, we deciphered the structural behavior of Chlamydomonas reinhardtii oxidized CP12 alone and in the presence of GAPDH. Contrary to sequence-based structural predictions, the N-terminal region is unstable, oscillates at the ms timescale between helical and random conformations, and is connected through a disordered linker to its C-terminus, which forms a stable helical turn. Upon binding to GAPDH, oxidized CP12 undergoes an induced unfolding of its N-terminus. This phenomenon called cryptic disorder contributes to decrease the entropy cost and explains CP12 unusual high affinity for its partners.
Collapse
|
10
|
Lee RFS, Menin L, Patiny L, Ortiz D, Dyson PJ. Versatile Tool for the Analysis of Metal–Protein Interactions Reveals the Promiscuity of Metallodrug–Protein Interactions. Anal Chem 2017; 89:11985-11989. [DOI: 10.1021/acs.analchem.7b02211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ronald F. S. Lee
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Luc Patiny
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
11
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
12
|
Moparthi SB, Thieulin-Pardo G, de Torres J, Ghenuche P, Gontero B, Wenger J. FRET analysis of CP12 structural interplay by GAPDH and PRK. Biochem Biophys Res Commun 2015; 458:488-493. [PMID: 25666947 DOI: 10.1016/j.bbrc.2015.01.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex.
Collapse
Affiliation(s)
- Satish Babu Moparthi
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France.
| | - Gabriel Thieulin-Pardo
- Aix Marseille Université, CNRS, UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille Cedex 20, France
| | - Juan de Torres
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| | - Petru Ghenuche
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| | - Brigitte Gontero
- Aix Marseille Université, CNRS, UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille Cedex 20, France
| | - Jérôme Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
| |
Collapse
|
13
|
Moparthi SB, Thieulin-Pardo G, Mansuelle P, Rigneault H, Gontero B, Wenger J. Conformational modulation and hydrodynamic radii of CP12 protein and its complexes probed by fluorescence correlation spectroscopy. FEBS J 2014; 281:3206-17. [DOI: 10.1111/febs.12854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gabriel Thieulin-Pardo
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université; France
| | - Pascal Mansuelle
- Plate-forme Protéomique; Marseille Protéomique; Institut de Microbiologie de la Méditerranée; France
| | - Hervé Rigneault
- Centrale Marseille; Institut Fresnel; Aix Marseille Université; France
| | - Brigitte Gontero
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université; France
| | - Jérôme Wenger
- Centrale Marseille; Institut Fresnel; Aix Marseille Université; France
| |
Collapse
|
14
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
15
|
Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014; 445:683-93. [PMID: 24556311 PMCID: PMC4103433 DOI: 10.1016/j.bbrc.2014.02.041] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022]
Abstract
The rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.
Collapse
Affiliation(s)
- Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
16
|
López-Calcagno PE, Howard TP, Raines CA. The CP12 protein family: a thioredoxin-mediated metabolic switch? FRONTIERS IN PLANT SCIENCE 2014; 5:9. [PMID: 24523724 PMCID: PMC3906501 DOI: 10.3389/fpls.2014.00009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/07/2014] [Indexed: 05/08/2023]
Abstract
CP12 is a small, redox-sensitive protein, representatives of which are found in most photosynthetic organisms, including cyanobacteria, diatoms, red and green algae, and higher plants. The only clearly defined function for CP12 in any organism is in the thioredoxin-mediated regulation of the Calvin-Benson cycle. CP12 mediates the formation of a complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) in response to changes in light intensity. Under low light, the formation of the GAPDH/PRK/CP12 complex results in a reduction in the activity of both PRK and GAPDH and, under high light conditions, thioredoxin mediates the disassociation of the complex resulting in an increase in both GAPDH and PRK activity. Although the role of CP12 in the redox-mediated formation of the GAPDH/PRK/CP12 multiprotein complex has been clearly demonstrated, a number of studies now provide evidence that the CP12 proteins may play a wider role. In Arabidopsis thaliana CP12 is expressed in a range of tissue including roots, flowers, and seeds and antisense suppression of tobacco CP12 disrupts metabolism and impacts on growth and development. Furthermore, in addition to the higher plant genomes which encode up to three forms of CP12, analysis of cyanobacterial genomes has revealed that, not only are there multiple forms of the CP12 protein, but that in these organisms CP12 is also found fused to cystathionine-β-synthase domain containing proteins. In this review we present the latest information on the CP12 protein family and explore the possibility that CP12 proteins form part of a redox-mediated metabolic switch, allowing organisms to respond to rapid changes in the external environment.
Collapse
Affiliation(s)
| | - Thomas P. Howard
- Biosciences, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | | |
Collapse
|
17
|
An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle. Biochem Soc Trans 2013; 40:995-9. [PMID: 22988853 DOI: 10.1042/bst20120097] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many proteins contain disordered regions under physiological conditions and lack specific three-dimensional structure. These are referred to as IDPs (intrinsically disordered proteins). CP12 is a chloroplast protein of approximately 80 amino acids and has a molecular mass of approximately 8.2-8.5 kDa. It is enriched in charged amino acids and has a small number of hydrophobic residues. It has a high proportion of disorder-promoting residues, but has at least two (often four) cysteine residues forming one (or two) disulfide bridge(s) under oxidizing conditions that confers some order. However, CP12 behaves like an IDP. It appears to be universally distributed in oxygenic photosynthetic organisms and has recently been detected in a cyanophage. The best studied role of CP12 is its regulation of the Calvin cycle responsible for CO2 assimilation. Oxidized CP12 forms a supramolecular complex with two key Calvin cycle enzymes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and PRK (phosphoribulokinase), down-regulating their activity. Association-dissociation of this complex, induced by the redox state of CP12, allows the Calvin cycle to be inactive in the dark and active in the light. CP12 is promiscuous and interacts with other enzymes such as aldolase and malate dehydrogenase. It also plays other roles in plant metabolism such as protecting GAPDH from inactivation and scavenging metal ions such as copper and nickel, and it is also linked to stress responses. Thus CP12 seems to be involved in many functions in photosynthetic cells and behaves like a jack of all trades as well as being a master of the Calvin cycle.
Collapse
|
18
|
Stanley DN, Raines CA, Kerfeld CA. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. PLANT PHYSIOLOGY 2013; 161. [PMID: 23184231 PMCID: PMC3561022 DOI: 10.1104/pp.112.210542] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CP12 is found almost universally among photosynthetic organisms, where it plays a key role in regulation of the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. Newly available genomic sequence data for the phylum Cyanobacteria reveals a heretofore unobserved diversity in cyanobacterial CP12 proteins. Cyanobacterial CP12 proteins can be classified into eight different types based on primary structure features. Among these are CP12-CBS (for cystathionine-β-synthase) domain fusions. CBS domains are regulatory modules for a wide range of cellular activities; many of these bind adenine nucleotides through a conserved motif that is also present in the CBS domains fused to CP12. In addition, a survey of expression data sets shows that the CP12 paralogs are differentially regulated. Furthermore, modeling of the cyanobacterial CP12 protein variants based on the recently available three-dimensional structure of the canonical cyanobacterial CP12 in complex with GAPDH suggests that some of the newly identified cyanobacterial CP12 types are unlikely to bind to GAPDH. Collectively these data show that, as is becoming increasingly apparent for plant CP12 proteins, the role of CP12 in cyanobacteria is likely more complex than previously appreciated, possibly involving other signals in addition to light. Moreover, our findings substantiate the proposal that this small protein may have multiple roles in photosynthetic organisms.
Collapse
|
19
|
Kaaki W, Woudstra M, Gontero B, Halgand F. Exploration of CP12 conformational changes and of quaternary structural properties using electrospray ionization traveling wave ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:179-186. [PMID: 23239332 DOI: 10.1002/rcm.6442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE CP12 is a small chloroplast protein involved in the Benson-Calvin cycle. Since it was demonstrated that the CP12 protein shared different conformational properties between reduced and oxidized states we took advantage of the segregational properties of the Traveling Wave Ion Mobility (TWIM) guide to study subtle conformational changes related to redox changes. METHODS Electrospray ionization mass (ESI-MS) spectra of the CP12 protein were recorded in the positive ion mode using an ESI source fitted on a quadrupole time-of-flight (QToF) hybrid mass spectrometer equipped with a TWIM cell (Synapt HDMS G1, Waters Corp., Manchester) under non-denaturing conditions. Non-covalent experiments were performed using the same instrument without the use of the TWIM device. RESULTS Whatever the CP12 form studied, our results showed that CP12 protein was represented by two conformers in equilibrium that displayed very slight differences. These observations led us to propose that CP12 protein structure is rather undergoing transient subtle structural changes than having two different conformational populations in solution. In addition, using non-denaturing experiments, NAD and CP12 stoichiometry were determined with respect to the GAPDH tetramer and the redox state of CP12. CONCLUSIONS In this study we showed that the use of the segregational property of the ion mobility (TWIM, Synapt G1 HDMS, Waters, Manchester, UK) allowed differentiation of subtle conformational changes between redox states of the CP12 protein. Standard non-denaturing experiments revealed different binding stoichiometry according to the redox state of the CP12 protein.
Collapse
Affiliation(s)
- Wassim Kaaki
- Unité de Bioénergétique et Ingénierie des Protéines (UMR 7281), Institut de Microbiologie de la Méditerranée, CNRS & AMU Aix-Marseille Univ, France
| | | | | | | |
Collapse
|
20
|
Abstract
The work presented by Matsumura et al. in this issue of Structure describes the structure of the ternary GAPDH-NAD-CP12 and the binary NAD-GAPDH complex in the cyanobacterium Synechococcus elongatus.
Collapse
Affiliation(s)
- Brigitte Gontero
- BIP-CNRS-Aix Marseille Université, IMM, 31 Ch J. Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
21
|
Matsumura H, Kai A, Maeda T, Tamoi M, Satoh A, Tamura H, Hirose M, Ogawa T, Kizu N, Wadano A, Inoue T, Shigeoka S. Structure basis for the regulation of glyceraldehyde-3-phosphate dehydrogenase activity via the intrinsically disordered protein CP12. Structure 2012; 19:1846-54. [PMID: 22153507 DOI: 10.1016/j.str.2011.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/14/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022]
Abstract
The reversible formation of a glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-CP12-phosphoribulokinase (PRK) supramolecular complex, identified in oxygenic photosynthetic organisms, provides light-dependent Calvin cycle regulation in a coordinated manner. An intrinsically disordered protein (IDP) CP12 acts as a linker to sequentially bind GAPDH and PRK to downregulate both enzymes. Here, we report the crystal structures of the ternary GAPDH-CP12-NAD and binary GAPDH-NAD complexes from Synechococcus elongates. The GAPDH-CP12 complex structure reveals that the oxidized CP12 becomes partially structured upon GAPDH binding. The C-terminus of CP12 is inserted into the active-site region of GAPDH, resulting in competitive inhibition of GAPDH. This study also provides insight into how the GAPDH-CP12 complex is dissociated by a high NADP(H)/NAD(H) ratio. An unexpected increase in negative charge potential that emerged upon CP12 binding highlights the biological function of CP12 in the sequential assembly of the supramolecular complex.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nicolardi S, Andreoni A, Tabares LC, van der Burgt YEM, Canters GW, Deelder AM, Hensbergen PJ. Top-down FTICR MS for the identification of fluorescent labeling efficiency and specificity of the Cu-protein azurin. Anal Chem 2012; 84:2512-20. [PMID: 22320330 DOI: 10.1021/ac203370f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent protein labeling has been an indispensable tool in many applications of biochemical, biophysical, and cell biological research. Although detailed information about the labeling stoichiometry and exact location of the label is often not necessary, for other purposes, this information is crucial. We have studied the potential of top-down electrospray ionization (ESI)-15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to study the degree and positioning of fluorescent labeling. For this purpose, we have labeled the Cu-protein azurin with the fluorescent label ATTO 655-N-hydroxysuccinimide(NHS)-ester and fractionated the sample using anion exchange chromatography. Subsequently, individual fractions were analyzed by ESI-15T FTICR to determine the labeling stoichiometry, followed by top-down MS fragmentation, to locate the position of the label. Results showed that, upon labeling with ATTO 655-NHS, multiple different species of either singly or doubly labeled azurin were formed. Top-down fragmentation of different species, either with or without the copper, resulted in a sequence coverage of approximately 50%. Different primary amine groups were found to be (potential) labeling sites, and Lys-122 was identified as the major labeling attachment site. In conclusion, we have demonstrated that anion exchange chromatography in combination with ultrahigh resolution 15T ESI-FTICR top-down mass spectrometry is a valuable tool for measuring fluorescent labeling efficiency and specificity.
Collapse
Affiliation(s)
- Simone Nicolardi
- Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in Top-Down Proteomics. Anal Chem 2011; 84:720-34. [DOI: 10.1021/ac202882y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Zhibing Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| |
Collapse
|
24
|
Cui W, Rohrs HW, Gross ML. Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 2011; 136:3854-64. [PMID: 21826297 PMCID: PMC3505190 DOI: 10.1039/c1an15286f] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Top-down mass spectrometry is an emerging approach for the analysis of intact proteins. The term was coined as a contrast with the better-established, bottom-up strategy for analysis of peptide fragments derived from digestion, either enzymatically or chemically, of intact proteins. Although the term top-down originates from proteomics, it can also be applied to mass spectrometric analysis of intact large biomolecules that are constituents of protein assemblies or complexes. Traditionally, mass spectrometry has usually started with intact molecules, and in this regard, top-down approaches reflect the spirit of mass spectrometry. This article provides an overview of the methodologies in top-down mass spectrometry and then reviews applications covering protein posttranslational modifications, protein biophysics, DNAs/RNAs, and protein assemblies. Finally, challenges and future directions are discussed.
Collapse
Affiliation(s)
- Weidong Cui
- NIH NCRR Center for Biomedical and Bio-Organic Mass Spectrometry, Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
25
|
Zhang H, Cui W, Wen J, Blankenship RE, Gross ML. Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal Chem 2011; 83:5598-606. [PMID: 21612283 DOI: 10.1021/ac200695d] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high sensitivity, extended mass range, and fast data acquisition/processing of mass spectrometry and its coupling with native electrospray ionization (ESI) make the combination complementary to other biophysical methods of protein analysis. Protein assemblies with molecular masses up to MDa are now accessible by this approach. Most current approaches have used quadrupole/time-of-flight tandem mass spectrometry, sometimes coupled with ion mobility, to reveal stoichiometry, shape, and dissociation of protein assemblies. The amino-acid sequence of the subunits, however, still relies heavily on independent bottom-up proteomics. We describe here an approach to study protein assemblies that integrates electron-capture dissociation (ECD), native ESI, and FTICR mass spectrometry (12 T). Flexible regions of assembly subunits of yeast alcohol dehydrogenase (147 kDa), concanavalin A (103 kDa), and photosynthetic Fenna-Matthews-Olson antenna protein complex (140 kDa) can be sequenced by ECD or "activated-ion" ECD. Furthermore, noncovalent metal-binding sites can also be determined for the concanavalin A assembly. Most importantly, the regions that undergo fragmentation, either from one of the termini by ECD or from the middle of a protein, as initiated by CID, correlate well with the B-factor from X-ray crystallography of that protein. This factor is a measure of the extent an atom can move from its coordinated position as a function of temperature or crystal imperfections. The approach provides not only top-down proteomics information of the complex subunits but also structural insights complementary to those obtained by ion mobility.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | | | | | | | | |
Collapse
|
26
|
Erales J, Mekhalfi M, Woudstra M, Gontero B. Molecular mechanism of NADPH-glyceraldehyde-3-phosphate dehydrogenase regulation through the C-terminus of CP12 in Chlamydomonas reinhardtii. Biochemistry 2011; 50:2881-8. [PMID: 21366264 DOI: 10.1021/bi1020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Chlamydomonas reinhardtii, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) consists of four GapA subunits. This A4 GAPDH is not autonomously regulated, as the regulatory cysteine residues present on GapB subunits are missing in GapA subunits. The regulation of A4 GAPDH is provided by another protein, CP12. To determine the molecular mechanisms of regulation of A4 GAPDH, we mutated three residues (R82, R190, and S195) of GAPDH of C. reinhardtii. Kinetic studies of GAPDH mutants showed the importance of residue R82 in the specificity of GAPDH for NADPH, as previously shown for the spinach enzyme. The cofactor NADPH was not stabilized through the 2'-phosphate by the serine 195 residue of the algal GAPDH, unlike the case in spinach. The mutation of R190 also led to a structural change that was not observed in the spinach enzyme. This mutation led to a loss of activity for NADPH and NADH, indicating the crucial role of this residue in maintaining the algal GAPDH structure. Finally, the interaction between GAPDH mutants and wild-type and mutated CP12 was analyzed by immunoblotting experiments, surface plasmon resonance, and kinetic studies. The results obtained with these approaches highlight the involvement of the last residue of CP12, Asp80, in modulating the activity of GAPDH by preventing access of the cofactor NADPH to the active site. These results help us to bridge the gap between our knowledge of structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de complexes supramoléculaires, BIP-UPR 9036, BIP-CNRS, IMM-Aix-Marseille Universities, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
27
|
Yin S, Loo JA. Top-Down Mass Spectrometry of Supercharged Native Protein-Ligand Complexes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 300:118-122. [PMID: 21499519 PMCID: PMC3076692 DOI: 10.1016/j.ijms.2010.06.032] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tandem mass spectrometry (MS/MS) of intact, noncovalently-bound protein-ligand complexes can yield structural information on the site of ligand binding. Fourier transform ion cyclotron resonance (FT-ICR) top-down MS of the 29 kDa carbonic anhydrase-zinc complex and adenylate kinase bound to adenosine triphosphate (ATP) with collisionally activated dissociation (CAD) and/or electron capture dissociation (ECD) generates product ions that retain the ligand and their identities are consistent with the solution phase structure. Increasing gas phase protein charging from electrospray ionization (ESI) by the addition of supercharging reagents, such as m-nitrobenzyl alcohol and sulfolane, to the protein analyte solution improves the capability of MS/MS to generate holo-product ions. Top-down proteomics for protein sequencing can be enhanced by increasing analyte charging.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
28
|
Mounicou S, Ouerdane L, L'Azou B, Passagne I, Ohayon-Courtès C, Szpunar J, Lobinski R. Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry. Anal Chem 2010; 82:6947-57. [PMID: 20669907 DOI: 10.1021/ac101245h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive approach to the characterization of metallothionein (MT) isoforms based on microbore HPLC with multimodal detection was developed. MTs were separated as Cd(7) complexes, detected by ICP MS and tentatively identified by molecular mass measured with 1-2 ppm accuracy using Orbital ion trap mass spectrometry. The identification was validated by accurate mass of the corresponding apo-MTs after postcolumn acidification and by their sequences acquired online by higher-energy collision dissociation MS/MS. The detection limits down to 10 fmol and 45 fmol could be obtained by ESI MS for apo- and Cd(7)-isoforms, respectively, and were lower than those obtained by ICP MS (100 fmol). The individual MT isoforms could be sequenced at levels as low as 200 fmol with the sequence coverage exceeding 90%. The approach was successfully applied to the identification of MT isoforms induced in a pig kidney cell line (LLC-PK(1)) exposed to CdS nanoparticles.
Collapse
Affiliation(s)
- Sandra Mounicou
- CNRS/UPPA, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, 2, av. Pr. Angot, 64053 Pau, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Erales J, Lignon S, Gontero B. CP12 from Chlamydomonas reinhardtii, a permanent specific "chaperone-like" protein of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 2009; 284:12735-44. [PMID: 19287002 DOI: 10.1074/jbc.m808254200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new role is reported for CP12, a highly unfolded and flexible protein, mainly known for its redox function with A(4) glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both reduced and oxidized CP12 can prevent the in vitro thermal inactivation and aggregation of GAPDH from Chlamydomonas reinhardtii. This mechanism is thus not redox-dependent. The protection is specific to CP12, because other proteins, such as bovine serum albumin, thioredoxin, and a general chaperone, Hsp33, do not fully prevent denaturation of GAPDH. Furthermore, CP12 acts as a specific chaperone, since it does not protect other proteins, such as catalase, alcohol dehydrogenase, or lysozyme. The interaction between CP12 and GAPDH is necessary to prevent the aggregation and inactivation, since the mutant C66S that does not form any complex with GAPDH cannot accomplish this protection. Unlike the C66S mutant, the C23S mutant that lacks the N-terminal bridge is partially able to protect and to slow down the inactivation and aggregation. Tryptic digestion coupled to mass spectrometry confirmed that the S-loop of GAPDH is the interaction site with CP12. Thus, CP12 not only has a redox function but also behaves as a specific "chaperone-like protein" for GAPDH, although a stable and not transitory interaction is observed. This new function of CP12 may explain why it is also present in complexes involving A(2)B(2) GAPDHs that possess a regulatory C-terminal extension (GapB subunit) and therefore do not require CP12 to be redox-regulated.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de Complexes Supramoléculaires, UPR 9036, Bioénergétique et Ingénierie des Protéines, Marseille Cedex 20, France
| | | | | |
Collapse
|