1
|
Fukui K, Yamamoto T, Murakawa T, Baba S, Kumasaka T, Yano T. Catalytic mechanism of the zinc-dependent MutL endonuclease reaction. Life Sci Alliance 2023; 6:e202302001. [PMID: 37487639 PMCID: PMC10366529 DOI: 10.26508/lsa.202302001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
DNA mismatch repair endonuclease MutL binds two zinc ions. However, the endonuclease activity of MutL is drastically enhanced by other divalent metals such as manganese, implying that MutL binds another catalytic metal at some site other than the zinc-binding sites. Here, we solved the crystal structure of the endonuclease domain of Aquifex aeolicus MutL in the manganese- or cadmium-bound form, revealing that these metals compete with zinc at the same sites. Mass spectrometry revealed that the MutL yielded 5'-phosphate and 3'-OH products, which is characteristic of the two-metal-ion mechanism. Crystallographic analyses also showed that the position and flexibility of a highly conserved Arg of A. aeolicus MutL altered depending on the presence of zinc/manganese or the specific inhibitor cadmium. Site-directed mutagenesis revealed that the Arg was critical for the catalysis. We propose that zinc ion and its binding sites are physiologically of catalytic importance and that the two-metal-ion mechanism works in the reaction, where the Arg plays a catalytic role. Our results also provide a mechanistic insight into the inhibitory effect of a mutagen/carcinogen, cadmium, on MutL.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Seiki Baba
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Takashi Kumasaka
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
2
|
Putnam CD, Kolodner RD. Insights into DNA cleavage by MutL homologs from analysis of conserved motifs in eukaryotic Mlh1. Bioessays 2023; 45:e2300031. [PMID: 37424007 PMCID: PMC10530380 DOI: 10.1002/bies.202300031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
MutL family proteins contain an N-terminal ATPase domain (NTD), an unstructured interdomain linker, and a C-terminal domain (CTD), which mediates constitutive dimerization between subunits and often contains an endonuclease active site. Most MutL homologs direct strand-specific DNA mismatch repair by cleaving the error-containing daughter DNA strand. The strand cleavage reaction is poorly understood; however, the structure of the endonuclease active site is consistent with a two- or three-metal ion cleavage mechanism. A motif required for this endonuclease activity is present in the unstructured linker of Mlh1 and is conserved in all eukaryotic Mlh1 proteins, except those from metamonads, which also lack the almost absolutely conserved Mlh1 C-terminal phenylalanine-glutamate-arginine-cysteine (FERC) sequence. We hypothesize that the cysteine in the FERC sequence is autoinhibitory, as it sequesters the active site. We further hypothesize that the evolutionary co-occurrence of the conserved linker motif with the FERC sequence indicates a functional interaction, possibly by linker motif-mediated displacement of the inhibitory cysteine. This role is consistent with available data for interactions between the linker motif with DNA and the CTDs in the vicinity of the active site.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research San Diego Branch, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Departments of Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Moores Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research San Diego Branch, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Cellular and Molecular Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Moores Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
| |
Collapse
|
3
|
Savitskaya VY, Strekalovskikh VV, Snyga VG, Monakhova MV, Arutyunyan AM, Dolinnaya NG, Kubareva EA. pilE G-Quadruplex Is Recognized and Preferentially Bound but Not Processed by the MutL Endonuclease from Neisseria gonorrhoeae Mismatch Repair Pathway. Int J Mol Sci 2023; 24:ijms24076167. [PMID: 37047138 PMCID: PMC10094033 DOI: 10.3390/ijms24076167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a G-quadruplex (G4) located upstream of the pilE promoter. Using bioinformatics tools, we found a correlation between pilE variability and deletion of DNA regions encoding ngMutS or ngMutL proteins, the main participants in N. gonorrhoeae methyl-independent MMR. To understand whether the G4 structure could affect the ngMutL-mediated regulation of pilin antigenic variation, we designed several synthetic pilE G4-containing oligonucleotides, differing in length, and related DNA duplexes. Using CD measurements and biochemical approaches, we have showed that (i) ngMutL preferentially binds to pilE G4 compared to DNA duplex, although the latter is a cognate substrate for ngMutL endonuclease, (ii) protein binding affinity decreases with shortening of quadruplex-containing and duplex ligands, (iii) the G4 structure inhibits ngMutL-induced DNA nicking and modulates cleavage positions; the enzyme does not cleave DNA within G4, but is able to bypass this noncanonical structure. Thus, pilE G4 may regulate the efficiency of pilin antigenic variation by quadruplex binding to ngMutL and suppression of homologous recombination.
Collapse
Affiliation(s)
| | - Vadim V Strekalovskikh
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Viktoriia G Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nina G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Pavlova AV, Dolinnaya NG, Zvereva MI, Kubareva EA, Monakhova MV. New DNA Plasmid Model for Studying DNA Mismatch Repair Response to the G4 Structure. Int J Mol Sci 2023; 24:ijms24021061. [PMID: 36674575 PMCID: PMC9863064 DOI: 10.3390/ijms24021061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
- Correspondence: ; Tel.: +7-(495)-939-54-11
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| |
Collapse
|
5
|
Savitskaya VY, Monakhova MV, Iakushkina IV, Borovikova II, Kubareva EA. Neisseria gonorrhoeae: DNA Repair Systems and Their Role in Pathogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:965-982. [PMID: 36180987 DOI: 10.1134/s0006297922090097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Neisseria gonorrhoeae (a Gram-negative diplococcus) is a human pathogen and causative agent of gonorrhea, a sexually transmitted infection. The bacterium uses various approaches for adapting to environmental conditions and multiplying efficiently in the human body, such as regulation of expression of gene expression of surface proteins and lipooligosaccharides (e.g., expression of various forms of pilin). The systems of DNA repair play an important role in the bacterium ability to survive in the host body. This review describes DNA repair systems of N. gonorrhoeae and their role in the pathogenicity of this bacterium. A special attention is paid to the mismatch repair system (MMR) and functioning of the MutS and MutL proteins, as well as to the role of these proteins in regulation of the pilin antigenic variation of the N. gonorrhoeae pathogen.
Collapse
Affiliation(s)
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Iuliia V Iakushkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina I Borovikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
G-Quadruplex Formed by the Promoter Region of the hTERT Gene: Structure-Driven Effects on DNA Mismatch Repair Functions. Biomedicines 2022; 10:biomedicines10081871. [PMID: 36009419 PMCID: PMC9405553 DOI: 10.3390/biomedicines10081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
G-quadruplexes (G4s) are a unique class of noncanonical DNAs that play a key role in cellular processes and neoplastic transformation. Herein, we focused on the promoter region of human TERT oncogene, whose product is responsible for the immortality of cancer cells. It has been shown by chemical probing and spectroscopic methods that synthetic 96-nt DNAs modeling the wild-type G-rich strand of the hTERT promoter and its variants with G>A point substitutions corresponding to somatic driver mutations fold into three stacked parallel G4s with sites of local G4 destabilization caused by G>A substitutions in the G4 motif. These models were used to elucidate how the hTERT multiG4 affects the binding affinity and functional responses of two key proteins, MutS and MutL, involved in the initial stage of DNA mismatch repair (MMR) in Escherichiacoli and Neisseriagonorrhoeae with different MMR mechanisms. We have shown for the first time that (i) point substitutions do not affect the effective binding of these proteins to the hTERT G4 structure, and (ii) the endonuclease activity of MutL from N. gonorrhoeae is significantly suppressed by the stable G4 scaffold. It is likely that some of the genomic instability associated with G4 may be related to the blockage of human intrinsic methyl-independent MMR attempting to operate near G4 structures.
Collapse
|
7
|
On YY, Welch M. The methylation-independent mismatch repair machinery in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34882086 PMCID: PMC8744996 DOI: 10.1099/mic.0.001120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last 70 years, we've all gotten used to an Escherichia coli-centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from E. coli to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, Pseudomonas aeruginosa (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in E. coli, and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.
Collapse
Affiliation(s)
- Yue Yuan On
- Department of Biochemistry, Hopkins Building, Tennis Court Road, Downing Site, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, Hopkins Building, Tennis Court Road, Downing Site, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
8
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
9
|
Strand discrimination in DNA mismatch repair. DNA Repair (Amst) 2021; 105:103161. [PMID: 34171627 DOI: 10.1016/j.dnarep.2021.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) corrects non-Watson-Crick basepairs generated by replication errors, recombination intermediates, and some forms of chemical damage to DNA. In MutS and MutL homolog-dependent MMR, damaged bases do not identify the error-containing daughter strand that must be excised and resynthesized. In organisms like Escherichia coli that use methyl-directed MMR, transient undermethylation identifies the daughter strand. For other organisms, growing in vitro and in vivo evidence suggest that strand discrimination is mediated by DNA replication-associated daughter strand nicks that direct asymmetric loading of the replicative clamp (the β-clamp in bacteria and the proliferating cell nuclear antigen, PCNA, in eukaryotes). Structural modeling suggests that replicative clamps mediate strand specificity either through the ability of MutL homologs to recognize the fixed orientation of the daughter strand relative to one face of the replicative clamps or through parental strand-specific diffusion of replicative clamps on DNA, which places the daughter strand in the MutL homolog endonuclease active site. Finally, identification of bacteria that appear to lack strand discrimination mediated by a replicative clamp and a pre-existing nick suggest that other strand discrimination mechanisms exist or that these organisms perform MMR by generating a double-stranded DNA break intermediate, which may be analogous to NucS-mediated MMR.
Collapse
|
10
|
Monakhova MV, Milakina MA, Savitskaia VY, Romanova EA, Rao DN, Kubareva EA. MutL Protein from the Neisseria gonorrhoeae Mismatch Repair System: Interaction with ATP and DNA. Mol Biol 2021. [DOI: 10.1134/s0026893321020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Monakhova MV, Milakina MA, Trikin RM, Oretskaya TS, Kubareva EA. Functional Specifics of the MutL Protein of the DNA Mismatch Repair System in Different Organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Minobe A, Fukui K, Yonezu H, Ohshita K, Mizobuchi S, Morisawa T, Hakumai Y, Yano T, Ashiuchi M, Wakamatsu T. Biochemical characterization of mismatch-binding protein MutS1 and nicking endonuclease MutL from a euryarchaeon Methanosaeta thermophila. DNA Repair (Amst) 2019; 75:29-38. [PMID: 30711824 DOI: 10.1016/j.dnarep.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn2+/Ni2+/Co2+-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.
Collapse
Affiliation(s)
- Ai Minobe
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenji Fukui
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Hitomi Yonezu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Saki Mizobuchi
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Takashi Morisawa
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuichi Hakumai
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Takato Yano
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Makoto Ashiuchi
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
13
|
Fukui K, Baba S, Kumasaka T, Yano T. Multiple zinc ions maintain the open conformation of the catalytic site in the DNA mismatch repair endonuclease MutL from Aquifex aeolicus. FEBS Lett 2018; 592:1611-1619. [PMID: 29645090 DOI: 10.1002/1873-3468.13050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/06/2022]
Abstract
The DNA mismatch repair endonuclease MutL consists of N-terminal ATPase and C-terminal endonuclease domains. The endonuclease domain binds zinc ion, although the ion seems not to function as a catalytic metal ion. Here, we solved the crystal structures of the Aquifex aeolicus MutL (aqMutL) endonuclease domain complexed with a single and three zinc ions. Differences between the two structures show that binding of multiple zinc ions induces a closed-to-open conformational change at the catalytic site. It is also revealed that the three-zinc-bound form of the endonuclease domain exhibits higher endonuclease activity than the single-zinc-bound form. These results indicate that multiple zinc ions are required for the proper folding of the endonuclease domain, which would facilitate the endonuclease activity of aqMutL.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Osaka Medical College, Takatsuki, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Japan
| | - Takato Yano
- Department of Biochemistry, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
14
|
Monakhova MV, Penkina AI, Pavlova AV, Lyaschuk AM, Kucherenko VV, Alexeevski AV, Lunin VG, Friedhoff P, Klug G, Oretskaya TS, Kubareva EA. Endonuclease Activity of MutL Protein of the Rhodobacter sphaeroides Mismatch Repair System. BIOCHEMISTRY. BIOKHIMIIA 2018; 83:281-293. [PMID: 29625547 DOI: 10.1134/s0006297918030082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have purified the MutL protein from Rhodobacter sphaeroides mismatch repair system (rsMutL) for the first time. rsMutL demonstrated endonuclease activity in vitro, as predicted by bioinformatics analysis. Based on the alignment of 1483 sequences of bacterial MutL homologs with presumed endonuclease activity, conserved functional motifs and amino acid residues in the rsMutL sequence were identified: five motifs comprising the catalytic site responsible for DNA cleavage were found in the C-terminal domain; seven conserved motifs involved in ATP binding and hydrolysis and specific to the GHKL family of ATPases were found in the N-terminal domain. rsMutL demonstrated the highest activity in the presence of Mn2+. The extent of plasmid DNA hydrolysis declined in the row Mn2+ > Co2+ > Mg2+ > Cd2+; Ni2+ and Ca2+ did not activate rsMutL. Divalent zinc ions inhibited rsMutL endonuclease activity in the presence of Mn2+ excess. ATP also suppressed plasmid DNA hydrolysis by rsMutL. Analysis of amino acid sequences and biochemical properties of five studied bacterial MutL homologs with endonuclease activity revealed that rsMutL resembles the MutL proteins from Neisseria gonorrhoeae and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- M V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fukui K, Iino H, Baba S, Kumasaka T, Kuramitsu S, Yano T. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1178-1187. [PMID: 28668638 DOI: 10.1016/j.bbapap.2017.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-β sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
| | - Hitoshi Iino
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-Gun, Hyogo 679-5148, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Takato Yano
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
16
|
Fukui K, Baba S, Kumasaka T, Yano T. Structural Features and Functional Dependency on β-Clamp Define Distinct Subfamilies of Bacterial Mismatch Repair Endonuclease MutL. J Biol Chem 2016; 291:16990-7000. [PMID: 27369079 DOI: 10.1074/jbc.m116.739664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
In early reactions of DNA mismatch repair, MutS recognizes mismatched bases and activates MutL endonuclease to incise the error-containing strand of the duplex. DNA sliding clamp is responsible for directing the MutL-dependent nicking to the newly synthesized/error-containing strand. In Bacillus subtilis MutL, the β-clamp-interacting motif (β motif) of the C-terminal domain (CTD) is essential for both in vitro direct interaction with β-clamp and in vivo repair activity. A large cluster of negatively charged residues on the B. subtilis MutL CTD prevents nonspecific DNA binding until β clamp interaction neutralizes the negative charge. We found that there are some bacterial phyla whose MutL endonucleases lack the β motif. For example, the region corresponding to the β motif is completely missing in Aquifex aeolicus MutL, and critical amino acid residues in the β motif are not conserved in Thermus thermophilus MutL. We then revealed the 1.35 Å-resolution crystal structure of A. aeolicus MutL CTD, which lacks the β motif but retains the metal-binding site for the endonuclease activity. Importantly, there was no negatively charged cluster on its surface. It was confirmed that CTDs of β motif-lacking MutLs, A. aeolicus MutL and T. thermophilus MutL, efficiently incise DNA even in the absence of β-clamp and that β-clamp shows no detectable enhancing effect on their activity. In contrast, CTD of Streptococcus mutans, a β motif-containing MutL, required β-clamp for the digestion of DNA. We propose that MutL endonucleases are divided into three subfamilies on the basis of their structural features and dependence on β-clamp.
Collapse
Affiliation(s)
- Kenji Fukui
- From the Department of Biochemistry, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686 and
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takato Yano
- From the Department of Biochemistry, Osaka Medical College, 2-7, Daigakumachi, Takatsuki, Osaka 569-8686 and
| |
Collapse
|
17
|
Kadyrova LY, Kadyrov FA. Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair (Amst) 2016; 38:42-49. [PMID: 26719141 PMCID: PMC4820397 DOI: 10.1016/j.dnarep.2015.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
18
|
Pillon MC, Babu VMP, Randall JR, Cai J, Simmons LA, Sutton MD, Guarné A. The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Res 2015; 43:10746-59. [PMID: 26384423 PMCID: PMC4678855 DOI: 10.1093/nar/gkv918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/04/2015] [Accepted: 09/06/2015] [Indexed: 01/05/2023] Open
Abstract
The sliding clamp enhances polymerase processivity and coordinates DNA replication with other critical DNA processing events including translesion synthesis, Okazaki fragment maturation and DNA repair. The relative binding affinity of the sliding clamp for its partners determines how these processes are orchestrated and is essential to ensure the correct processing of newly replicated DNA. However, while stable clamp interactions have been extensively studied; dynamic interactions mediated by the sliding clamp remain poorly understood. Here, we characterize the interaction between the bacterial sliding clamp (β-clamp) and one of its weak-binding partners, the DNA mismatch repair protein MutL. Disruption of this interaction causes a mild mutator phenotype in Escherichia coli, but completely abrogates mismatch repair activity in Bacillus subtilis. We stabilize the MutL-β interaction by engineering two cysteine residues at variable positions of the interface. Using disulfide bridge crosslinking, we have stabilized the E. coli and B. subtilis MutL-β complexes and have characterized their structures using small angle X-ray scattering. We find that the MutL-β interaction greatly stimulates the endonuclease activity of B. subtilis MutL and supports this activity even in the absence of the N-terminal region of the protein.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Vignesh M P Babu
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Justin R Randall
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Jiudou Cai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109, USA
| | - Mark D Sutton
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA Genetics, Genomics and Bioinformatics Program, The School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
19
|
Evolution of the methyl directed mismatch repair system in Escherichia coli. DNA Repair (Amst) 2015; 38:32-41. [PMID: 26698649 DOI: 10.1016/j.dnarep.2015.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.
Collapse
|
20
|
Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein. Extremophiles 2015; 19:643-56. [PMID: 25809295 DOI: 10.1007/s00792-015-0745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/14/2015] [Indexed: 11/27/2022]
Abstract
DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.
Collapse
|
21
|
Neisseria gonorrhoeae MutS affects pilin antigenic variation through mismatch correction and not by pilE guanine quartet binding. J Bacteriol 2015; 197:1828-38. [PMID: 25777677 DOI: 10.1128/jb.02594-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many pathogens use homologous recombination to vary surface antigens to avoid immune surveillance. Neisseria gonorrhoeae achieves this in part by changing the properties of its surface pili in a process called pilin antigenic variation (AV). Pilin AV occurs by high-frequency gene conversion reactions that transfer silent pilS sequences into the expressed pilE locus and requires the formation of an upstream guanine quartet (G4) DNA structure to initiate this process. The MutS and MutL proteins of the mismatch correction (MMC) system act to correct mismatches after replication and prevent homeologous (i.e., partially homologous) recombination, but MutS orthologs can also bind to G4 structures. A previous study showed that mutation of MutS resulted in a 3-fold increase in pilin AV, which could be due to the loss of MutS antirecombination properties or loss of G4 binding. We tested two site-directed separation-of-function MutS mutants that are both predicted to bind to G4s but are not able to perform MMC. Pilus phase variation assays and DNA sequence analysis of pilE variants produced in these mutants showed that all three mutS mutants and a mutL mutant had similar increased frequencies of pilin AV. Moreover, the mutS mutants all showed similar increased levels of pilin AV-dependent synthetic lethality. These results show that antirecombination by MMC is the reason for the effect that MutS has on pilin AV and is not due to pilE G4 binding by MutS. IMPORTANCE Neisseria gonorrhoeae continually changes its outer surface proteins to avoid recognition by the immune system. N. gonorrhoeae alters the antigenicity of the pilus by directed recombination between partially homologous pilin copies in a process that requires a guanine quartet (G4) structure. The MutS protein of the mismatch correction (MMC) system prevents recombination between partially homologous sequences and can also bind to G4s. We confirmed that loss of MMC increases the frequency of pilin antigenic variation and that two MutS mutants that are predicted to separate the two different functions of MutS inhibit pilin variation similarly to a complete-loss-of-function mutant, suggesting that interaction of MutS with the G4 structure is not a major factor in this process.
Collapse
|
22
|
Guarné A, Charbonnier JB. Insights from a decade of biophysical studies on MutL: Roles in strand discrimination and mismatch removal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:149-156. [PMID: 25701376 DOI: 10.1016/j.pbiomolbio.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
DNA mismatch repair (MMR) is a conserved pathway that safeguards genome integrity by correcting replication errors. The coordinated actions of two proteins (MutS and MutL) initiate the mismatch repair response and defects in the genes encoding for these proteins have been linked to sporadic and hereditary cancers. The basic steps to repair a mismatch include recognizing the mismatch, discriminating the newly synthesized from the parental strand, removing and re-synthesizing the erroneous strand. Although the DNA mismatch repair pathway has been extensively studied over the last four decades, the strand discrimination mechanism has remained elusive in most organisms. Work over the last decade has brought significant progress onto this step of the pathway, in turn ascribing new and critical roles to the MutL protein. In this review, we describe biochemical, biophysical and structural analyses that have clarified how MutL aids at discriminating the newly synthesized strand from its template and marking it for removal.
Collapse
Affiliation(s)
- Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Jean-Baptiste Charbonnier
- CEA, IBITECS, Laboratoire de Biologie Structurale et Radiobiologie, CE-Saclay, F-91191 Gif sur Yvette, France; CNRS, URA 2096, F-91191 Gif sur Yvette, France.
| |
Collapse
|
23
|
Ahmad M, Tuteja R. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite. Mutat Res 2014; 770:54-60. [PMID: 25771870 DOI: 10.1016/j.mrfmmm.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/14/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Banasik M, Sachadyn P. Conserved motifs of MutL proteins. Mutat Res 2014; 769:69-79. [PMID: 25771726 DOI: 10.1016/j.mrfmmm.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 02/02/2023]
Abstract
The MutL protein is best known for its function in DNA mismatch repair (MMR). However, there is evidence to suggest that MutL is not only the linker connecting the functions of MutS and MutH in MMR, but that it also participates in other repair systems, such as Very Short Patch (VSP), Base Excision (BER) and Nucleotide Excision Repair (NER). This study set out to identify the most highly conserved amino acid sequence motifs in MutL proteins. We analyzed 208 MutL amino acid sequences of 199 representative prokaryotic species belonging to 28 classes of bacteria and archaea. The analysis revealed 16 conserved motifs situated in the ATPase and endonuclease domains, as well as within the disordered loop, and in the MutL regions interacting with the β clamp of DNA polymerase III. The conserved sequence motifs thus determined constitute a structural definition of MutL and they may be used in site-directed mutagenesis studies. We found conserved residues within the potential regions where binding with MutS occurs. However, the existing data does not provide clues as to the possible sites of MutL interactions with the proteins involved in other DNA repair systems such as NER, BER and VSP. We determined the 57 most highly conserved amino acid residues, including 43 which were identical in all the sequences analyzed. The greater part of the most predominantly conserved amino acid residues identified in MutL are identical to the corresponding residues reported as mutational hot-spots in one of its human homologues, MLH1, but not in the other, PMS2. This is the first study to present the conserved sequence motifs of MutL widespread in bacteria and archaea and the classification of MutLs into five groups distinguished on the basis of differences in the C-terminal region. Our analysis is of use in better understanding MutL functions.
Collapse
Affiliation(s)
- Michał Banasik
- Gdańsk University of Technology, Microbiology Department, Gdańsk, Poland
| | - Paweł Sachadyn
- Gdańsk University of Technology, Microbiology Department, Gdańsk, Poland.
| |
Collapse
|
25
|
Campbell CS, Hombauer H, Srivatsan A, Bowen N, Gries K, Desai A, Putnam CD, Kolodner RD. Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004327. [PMID: 24811092 PMCID: PMC4014439 DOI: 10.1371/journal.pgen.1004327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022] Open
Abstract
In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1. Lynch syndrome (hereditary nonpolyposis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. In this syndrome, predisposition to cancer results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the human mismatch repair genes MLH1, MSH2, MSH6 or PMS2. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. In Saccharomyces cerevisiae, the MLH2 gene encodes a MutL homolog protein whose role in DNA mismatch repair has been unclear. Here, we used phylogenetic analysis to demonstrate that the S. cerevisiae Mlh2 protein and the mammalian Pms1 protein are homologs. A combination of genetics, biochemistry and imaging studies were used to demonstrate that the Mlh1-Mlh2 complex is recruited to mispair-containing DNA by the Msh2-Msh6 and Msh2-Msh3 mispair recognition complexes where it forms foci that colocalize with Mlh1-Pms1 foci (note that scPms1 is the homolog of hPms2) and augments the function of the Mlh1-Pms1 complex. Thus, this work establishes the Mlh1-Mlh2 complex as a non-essential accessory factor that functions in MMR.
Collapse
Affiliation(s)
- Christopher S. Campbell
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Hans Hombauer
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Anjana Srivatsan
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Nikki Bowen
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Kerstin Gries
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Arshad Desai
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J Biol Chem 2014; 289:5664-73. [PMID: 24403070 DOI: 10.1074/jbc.m113.534644] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.
Collapse
Affiliation(s)
- Maria V Rogacheva
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | | | | | | | | | | |
Collapse
|
27
|
Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 2013; 9:e1003869. [PMID: 24204293 PMCID: PMC3814310 DOI: 10.1371/journal.pgen.1003869] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/25/2013] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. Although EXO1 is considered to be the major repair nuclease functioning in mismatch repair, the relatively low mutation rates caused by an exo1 deletion suggest otherwise. Here we used genetics, microscopy and protein biochemistry to analyze the model organism Saccharomyces cerevisiae to further characterize a poorly understood mismatch repair pathway that functions in the absence of EXO1 that is highly dependent on the Mlh1-Pms1 complex. Surprisingly, we found that the highly conserved metal binding site that is critical for the endonuclease activity of the Mlh1-Pms1 heterodimer is required for MMR in the absence of Exo1 to a much greater extent than in the presence of Exo1. Thus, this work establishes that there are at least two different polynucleotide excision pathways that function in MMR.
Collapse
Affiliation(s)
- Catherine E Smith
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Correa EME, De Tullio L, Vélez PS, Martina MA, Argaraña CE, Barra JL. Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity. J Biochem 2013; 154:505-11. [PMID: 23969026 DOI: 10.1093/jb/mvt080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hallmark of the mismatch repair system in bacterial and eukaryotic organisms devoid of MutH is the presence of a MutL homologue with endonuclease activity. The aim of this study was to analyse whether different DNA structures affect Pseudomonas aeruginosa MutL (PaMutL) endonuclease activity and to determine if a specific nucleotide sequence is required for this activity. Our results showed that PaMutL was able to nick covalently closed circular plasmids but not linear DNA at high ionic strengths, while the activity on linear DNA was only found below 60 mM salt. In addition, single strand DNA, ss/ds DNA boundaries and negatively supercoiling degree were not required for PaMutL nicking activity. Finally, the analysis of the incision sites revealed that PaMutL, as well as Bacillus thuringiensis MutL homologue, did not show DNA sequence specificity.
Collapse
Affiliation(s)
- Elisa M E Correa
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina and Centro de Excelencia en Productos, Procesos e Innovación Tecnológica de la Provincia de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Pillon MC, Dubinsky M, Johnston RN, Liu SL, Guarné A. Characterization of the defects in the ATP lid of E. coli MutL that cause transient hypermutability. DNA Repair (Amst) 2013; 12:864-9. [PMID: 23916559 DOI: 10.1016/j.dnarep.2013.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 12/12/2022]
Abstract
Mutator strains spontaneously arise in bacterial populations under stress in an attempt to increase evolutionary adaptation. Inactivation of the ubiquitous DNA mismatch repair pathway, whose normal function is to correct replication errors and hence increase replication fidelity, is often the cause of the mutator phenotype. One of the essential genes in this pathway, mutL, includes a short tandem repeat that is prone to polymerase slippage during replication. While extensive work has established that this repetitive sequence is a genuine genetic switch, the mechanism of MutL inactivation remains unclear. This short tandem repeat is translated into a LALALA motif that resides near the ATPase active site of MutL. Therefore, changes in the length of this motif are presumed to alter the ATPase activity of MutL. We have engineered variants of Escherichia coli MutL with shorter/longer LALALA motifs and characterized their ATPase and DNA binding functions. We have found that the deletion or insertion of a single LA repeat did not compromise the structural integrity of the protein, nor did it affect MutS- or DNA-binding activity. However, it severely compromised ATP binding and, consequently, engagement of the N-terminal domains; both essential activities for proper DNA mismatch repair. These results are discussed in the context of the structure of MutL.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
30
|
Miguel V, Correa EME, De Tullio L, Barra JL, Argaraña CE, Villarreal MA. Analysis of the interaction interfaces of the N-terminal domain from Pseudomonas aeruginosa MutL. PLoS One 2013; 8:e69907. [PMID: 23922851 PMCID: PMC3724809 DOI: 10.1371/journal.pone.0069907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/13/2013] [Indexed: 12/02/2022] Open
Abstract
Mismatch Repair System corrects mutations arising from DNA replication that escape from DNA polymerase proofreading activity. This system consists of three main proteins, MutS-L-H, responsible for lesion recognition and repair. MutL is a member of GHKL ATPase family and its ATPase cycle has been proposed to modulate MutL activity during the repair process. Pseudomonas aeruginosa MutL (PaMutL) contains an N-terminal (NTD) ATPase domain connected by a linker to a C-terminal (CTD) dimerization domain that possesses metal ion-dependent endonuclease activity. With the aim to identify characteristics that allow the PaMutL NTD allosteric control of CTD endonuclease activity, we used an in silico and experimental approach to determine the interaction surfaces of P. aeruginosa NTD (PaNTD), and compared it with the well characterized Escherichia coli MutL NTD (EcNTD). Molecular dynamics simulations of PaNTD and EcNTD bound to or free of adenosine nucleotides showed that a significant difference exists between the behavior of the EcNTD and PaNTD dimerization interface, particularly in the ATP lid. Structure based simulations of MutL homologues with endonuclease activity were performed that allowed an insight of the dimerization interface behavior in this family of proteins. Our experimental results show that, unlike EcNTD, PaNTD is dimeric in presence of ADP. Simulations in mixed solvent allowed us to identify the PaNTD putative DNA binding patch and a putative interaction patch located opposite to the dimerization face. Structure based simulations of PaNTD dimer in presence of ADP or ATP suggest that nucleotide binding could differentially modulate PaNTD protein-protein interactions. Far western assays performed in presence of ADP or ATP are in agreement with our in silico analysis.
Collapse
Affiliation(s)
- Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Elisa M. E. Correa
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Luisina De Tullio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - José L. Barra
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Carlos E. Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marcos A. Villarreal
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), CONICET, Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
31
|
Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K. MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 2013; 280:3467-79. [PMID: 23679952 DOI: 10.1111/febs.12344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Yang H, Yung M, Li L, Hoch JA, Ryan CM, Kar UK, Souda P, Whitelegge JP, Miller JH. Evidence that YycJ is a novel 5′–3′ double-stranded DNA exonuclease acting in Bacillus anthracis mismatch repair. DNA Repair (Amst) 2013; 12:334-46. [DOI: 10.1016/j.dnarep.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/27/2013] [Accepted: 02/05/2013] [Indexed: 11/29/2022]
|
33
|
Characterization of C- and N-terminal domains of Aquifex aeolicus MutL endonuclease: N-terminal domain stimulates the endonuclease activity of C-terminal domain in a zinc-dependent manner. Biosci Rep 2012; 31:309-22. [PMID: 20961292 DOI: 10.1042/bsr20100116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA MMR (mismatch repair) is an excision repair system that removes mismatched bases generated primarily by failure of the 3'-5' proofreading activity associated with replicative DNA polymerases. MutL proteins homologous to human PMS2 are the endonucleases that introduce the entry point of the excision reaction. Deficiency in PMS2 function is one of the major etiologies of hereditary non-polyposis colorectal cancers in humans. Although recent studies revealed that the CTD (C-terminal domain) of MutL harbours weak endonuclease activity, the regulatory mechanism of this activity remains unknown. In this paper, we characterize in detail the CTD and NTD (N-terminal domain) of aqMutL (Aquifex aeolicus MutL). On the one hand, CTD existed as a dimer in solution and showed weak DNA-binding and Mn2+-dependent endonuclease activities. On the other hand, NTD was monomeric and exhibited a relatively strong DNA-binding activity. It was also clarified that NTD promotes the endonuclease activity of CTD. NTD-mediated activation of CTD was abolished by depletion of the zinc-ion from the reaction mixture or by the substitution of the zinc-binding cysteine residue in CTD with an alanine. On the basis of these results, we propose a model for the intramolecular regulatory mechanism of MutL endonuclease activity.
Collapse
|
34
|
Tarique M, Satsangi AT, Ahmad M, Singh S, Tuteja R. Plasmodium falciparum MLH is schizont stage specific endonuclease. Mol Biochem Parasitol 2012; 181:153-61. [DOI: 10.1016/j.molbiopara.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/28/2011] [Accepted: 10/24/2011] [Indexed: 11/30/2022]
|
35
|
Xiao Y, Jung C, Marx AD, Winkler I, Wyman C, Lebbink JHG, Friedhoff P, Cristovao M. Generation of DNA nanocircles containing mismatched bases. Biotechniques 2012; 51:259-62, 264-5. [PMID: 21988692 DOI: 10.2144/000113749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.
Collapse
Affiliation(s)
- Yu Xiao
- Institute of Biochemistry, Justus-Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The functions of MutL in mismatch repair: the power of multitasking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:41-70. [PMID: 22749142 DOI: 10.1016/b978-0-12-387665-2.00003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA mismatch repair enhances genomic stability by correcting errors that have escaped polymerase proofreading. One of the critical steps in DNA mismatch repair is discriminating the new from the parental DNA strand as only the former needs repair. In Escherichia coli, the latent endonuclease MutH carries out this function. However, most prokaryotes and all eukaryotes lack a mutH gene. MutL is a key component of this system that mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal. Hence, it had long been thought that the primary function of MutL was coordinating sequential mismatch repair steps. However, recent studies have revealed that most MutL homologs from organisms lacking MutH encode a conserved metal-binding motif associated with a weak endonuclease activity. As MutL homologs bearing this activity are found only in organisms relying on MutH-independent DNA mismatch repair, this finding unveils yet another crucial function of the MutL protein at the strand discrimination step. In this chapter, we review recent functional and structural work aimed at characterizing the multiple functions of MutL and discuss how the endonuclease activity of MutL is regulated by other repair factors.
Collapse
|
37
|
Yamamoto T, Iino H, Kim K, Kuramitsu S, Fukui K. Evidence for ATP-dependent structural rearrangement of nuclease catalytic site in DNA mismatch repair endonuclease MutL. J Biol Chem 2011; 286:42337-42348. [PMID: 21953455 DOI: 10.1074/jbc.m111.277335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hitoshi Iino
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
38
|
Correa EME, Martina MA, De Tullio L, Argaraña CE, Barra JL. Some amino acids of the Pseudomonas aeruginosa MutL D(Q/M)HA(X)(2)E(X)(4)E conserved motif are essential for the in vivo function of the protein but not for the in vitro endonuclease activity. DNA Repair (Amst) 2011; 10:1106-13. [PMID: 21889424 DOI: 10.1016/j.dnarep.2011.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022]
Abstract
Human and Saccharomyces cerevisiae MutLα, and some bacterial MutL proteins, possess a metal ion-dependent endonuclease activity which is important for the in vivo function of these proteins. Conserved amino acids of the C-terminal region of human PMS2, S. cerevisiae PMS1 and of some bacterial MutL proteins have been implicated in the metal-binding/endonuclease activity. However, the contribution of individual amino acids to these activities has not yet been fully elucidated. In this work we show that Pseudomonas aeruginosa MutL protein possess an in vitro metal ion-dependent endonuclease activity. In agreement with previous published results, we observed that mutation of the aspartic acid, the first histidine or the first glutamic acid of the conserved C-terminal DMHAAHERITYE region results in nonfunctional in vivo proteins. We also determined that the arginine residue is essential for the in vivo function of this protein. However, we unexpectedly observed that although the first glutamic acid mutant derivative is not functional in vivo, its in vitro endonuclease activity is even higher than that of the wild-type protein.
Collapse
Affiliation(s)
- Elisa M E Correa
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
39
|
Namadurai S, Jain D, Kulkarni DS, Tabib CR, Friedhoff P, Rao DN, Nair DT. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer. PLoS One 2010; 5:e13726. [PMID: 21060849 PMCID: PMC2965676 DOI: 10.1371/journal.pone.0013726] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/23/2010] [Indexed: 01/07/2023] Open
Abstract
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.
Collapse
Affiliation(s)
| | - Deepti Jain
- Laboratory 4, National Centre for Biological Sciences, Bangalore, India
| | | | - Chaitanya R. Tabib
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Peter Friedhoff
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Giessen, Germany
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepak T. Nair
- Laboratory 4, National Centre for Biological Sciences, Bangalore, India
- * E-mail:
| |
Collapse
|
40
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
42
|
Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 2010; 39:145-51. [PMID: 20603082 DOI: 10.1016/j.molcel.2010.06.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 05/12/2010] [Indexed: 11/22/2022]
Abstract
DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.
Collapse
|
43
|
Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010. [PMID: 20725617 PMCID: PMC2915661 DOI: 10.4061/2010/260512] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
44
|
Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae. J Bacteriol 2010; 192:316-25. [PMID: 19854909 DOI: 10.1128/jb.01228-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mismatch correction (MMC) system repairs DNA mismatches and single nucleotide insertions or deletions postreplication. To test the functions of MMC in the obligate human pathogen Neisseria gonorrhoeae, homologues of the core MMC genes mutS and mutL were inactivated in strain FA1090. No mutH homologue was found in the FA1090 genome, suggesting that gonococcal MMC is not methyl directed. MMC mutants were compared to a mutant in uvrD, the helicase that functions with MMC in Escherichia coli. Inactivation of MMC or uvrD increased spontaneous resistance to rifampin and nalidixic acid, and MMC/uvrD double mutants exhibited higher mutation frequencies than any single mutant. Loss of MMC marginally enhanced the transformation efficiency of DNA carrying a single nucleotide mismatch but not that of DNA with a 1-kb insertion. Unlike the exquisite UV sensitivity of the uvrD mutant, inactivating MMC did not affect survival after UV irradiation. MMC and uvrD mutants exhibited increased PilC-dependent pilus phase variation. mutS-deficient gonococci underwent an increased frequency of pilin antigenic variation, whereas uvrD had no effect. Recombination tracts in the mutS pilin variants were longer than in parental gonococci but utilized the same donor pilS loci. These results show that gonococcal MMC repairs mismatches and small insertion/deletions in DNA and also affects the recombination events underlying pilin antigenic variation. The differential effects of MMC and uvrD in gonococci unexpectedly reveal that MMC can function independently of uvrD in this human-specific pathogen.
Collapse
|
45
|
Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity. PLoS One 2009; 4:e7175. [PMID: 19777055 PMCID: PMC2744016 DOI: 10.1371/journal.pone.0007175] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background Human PMS2 (hPMS2) homologues act to nick 5′ and 3′ to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)2E(X)4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. Methodologies/Principal Findings We examined the effect ATP had on the Mn++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6±0.08×10−5 s−1 and 4.2±0.3×10−5 s−1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)2E(X)4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. Conclusions ATP stimulated the Mn++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)2E(X)4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn++ induced nicking activity.
Collapse
|