1
|
Peng J, Zhang L, Lu K, Chen X, Pang H, Yao X, Li P, Cao P, Li X, Wang Z, Qin L, Zhou M, Wang M, Li Q, Qiu C, Sun M, Li Y, Gong L, Wei X, Wang S, Chen J, Lu C, Zou S, Ding X, Chen L, Zhang M, Dong H. Plant PI4P is required for bacteria to translocate type-3 effectors. THE NEW PHYTOLOGIST 2025; 245:748-766. [PMID: 39568298 DOI: 10.1111/nph.20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Type-3 effectors (T3E) of phytopathogenic Gram-negative bacteria fulfill a virulent role, causing disease, or an avirulent role, inducing immunity, following their translocation into plant cells. This study aimed to validate the hypothesis that bacterial T3E translocation requires lipidic compounds in plant cell membranes. Based on genetic, molecular, and biochemical assays, we determined that phosphatidylinositol 4-phosphate (PI4P) associated with plant cell membranes is essential for the translocation of T3E by bacterial pathogens. Replicate experimental data revealed that PI4P cooperates with the type-3 translocase HrpF to facilitate the translocation of effectors TAL and Xop from Xanthomonas oryzae and Hop from Pseudomonas syringae into the cells of Oryza sativa and Nicotiana benthamiana, respectively. Genetic and molecular analyses confirmed that, once translocated into plant cells, the distinct effectors induce disease or immunity. Combined genetic and pharmacological analyses revealed that when PI4P content is suppressed via genetic or pharmacological measures, the T3 effector translocation is considerably suppressed, resulting in serious inhibition of bacterial infection. Overall, these findings demonstrate that cooperative functioning of HrpF-PI4P is conserved in bacterial effectors and plants.
Collapse
Affiliation(s)
- Jinfeng Peng
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Kai Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Hao Pang
- Hainan Province Sanya City Bureau for Business Environment Construction, Sanya, 572022, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Ping Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Zhou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Maoling Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Qizhen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Chunyu Qiu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Mingxin Sun
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Yufen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Liping Gong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinlin Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Siyi Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chongchong Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
2
|
Collins DM, Janardan V, Barneda D, Anderson KE, Niewczas I, Taylor D, Qiu D, Jessen HJ, Lopez-Clavijo AF, Walker S, Raghu P, Clark J, Stephens LR, Hawkins PT. CDS2 expression regulates de novo phosphatidic acid synthesis. Biochem J 2024; 481:1449-1473. [PMID: 39312194 PMCID: PMC11555650 DOI: 10.1042/bcj20240456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
CDS enzymes (CDS1 and 2 in mammals) convert phosphatidic acid (PA) to CDP-DG, an essential intermediate in the de novo synthesis of PI. Genetic deletion of CDS2 in primary mouse macrophages resulted in only modest changes in the steady-state levels of major phospholipid species, including PI, but substantial increases in several species of PA, CDP-DG, DG and TG. Stable isotope labelling experiments employing both 13C6- and 13C6D7-glucose revealed loss of CDS2 resulted in a minimal reduction in the rate of de novo PI synthesis but a substantial increase in the rate of de novo PA synthesis from G3P, derived from DHAP via glycolysis. This increased synthesis of PA provides a potential explanation for normal basal PI synthesis in the face of reduced CDS capacity (via increased provision of substrate to CDS1) and increased synthesis of DG and TG (via increased provision of substrate to LIPINs). However, under conditions of sustained GPCR-stimulation of PLC, CDS2-deficient macrophages were unable to maintain enhanced rates of PI synthesis via the 'PI cycle', leading to a substantial loss of PI. CDS2-deficient macrophages also exhibited significant defects in calcium homeostasis which were unrelated to the activation of PLC and thus probably an indirect effect of increased basal PA. These experiments reveal that an important homeostatic response in mammalian cells to a reduction in CDS capacity is increased de novo synthesis of PA, likely related to maintaining normal levels of PI, and provides a new interpretation of previous work describing pleiotropic effects of CDS2 deletion on lipid metabolism/signalling.
Collapse
Affiliation(s)
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | | | | - Diane Taylor
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | | | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | |
Collapse
|
3
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
4
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
5
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. ARXIV 2023:arXiv:2309.06907v3. [PMID: 37744466 PMCID: PMC10516112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium-release activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA, 77030
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| |
Collapse
|
6
|
Neamtu A, Serban DN, Barritt GJ, Isac DL, Vasiliu T, Laaksonen A, Serban IL. Molecular dynamics simulations reveal the hidden EF-hand of EF-SAM as a possible key thermal sensor for STIM1 activation by temperature. J Biol Chem 2023; 299:104970. [PMID: 37380078 PMCID: PMC10400917 DOI: 10.1016/j.jbc.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Dragomir N Serban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Tudor Vasiliu
- Center of Advanced Research in Bionanocojugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Iasi, Iasi, Romania
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | | |
Collapse
|
7
|
Ivanova A, Atakpa-Adaji P. Phosphatidylinositol 4,5-bisphosphate and calcium at ER-PM junctions - Complex interplay of simple messengers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119475. [PMID: 37098393 DOI: 10.1016/j.bbamcr.2023.119475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Endoplasmic reticulum-plasma membrane contact sites (ER-PM MCS) are a specialised domain involved in the control of Ca2+ dynamics and various Ca2+-dependent cellular processes. Intracellular Ca2+ signals are broadly supported by Ca2+ release from intracellular Ca2+ channels such as inositol 1,4,5-trisphosphate receptors (IP3Rs) and subsequent store-operated Ca2+ entry (SOCE) across the PM to replenish store content. IP3Rs sit in close proximity to the PM where they can easily access newly synthesised IP3, interact with binding partners such as actin, and localise adjacent to ER-PM MCS populated by the SOCE machinery, STIM1-2 and Orai1-3, to possibly form a locally regulated unit of Ca2+ influx. PtdIns(4,5)P2 is a multiplex regulator of Ca2+ signalling at the ER-PM MCS interacting with multiple proteins at these junctions such as actin and STIM1, whilst also being consumed as a substrate for phospholipase C to produce IP3 in response to extracellular stimuli. In this review, we consider the mechanisms regulating the synthesis and turnover of PtdIns(4,5)P2 via the phosphoinositide cycle and its significance for sustained signalling at the ER-PM MCS. Furthermore, we highlight recent insights into the role of PtdIns(4,5)P2 in the spatiotemporal organization of signalling at ER-PM junctions and raise outstanding questions on how this multi-faceted regulation occurs.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
8
|
Pacheco J, Sampieri A, Vaca L. STIM1: The lord of the rings? Cell Calcium 2023; 112:102742. [PMID: 37126913 DOI: 10.1016/j.ceca.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
STIM1 and Orai1 are the central core of the Store Operated Calcium Entry (SOCE). This calcium influx mechanism is triggered after the activation of Gq protein-coupled receptors at the plasma membrane (PM) that activate phospholipase C. The phospholipase C produces Inositol triphosphate (IP3) which rapidly diffuses throughout the cytosol, resulting in the binding and activation of IP3 receptors (IP3R) and the rapid efflux of calcium from the endoplasmic reticulum (ER) to the cytosol. The calcium depletion in the ER is sensed by the stromal interaction molecule 1 (STIM1) a single-pass transmembrane protein at the ER that binds intraluminal calcium through an EF-hand domain in its amino terminal region (Fig. 1A). The cytosolic portion of STIM1 contains multiple domains. The region that interacts and activates Orai channels is known as SOAR (the STIM1 Orai activating region) [1]. For SOAR be accessible to Orai1, STIM1 must get an extended conformation that unlocks SOAR from its coiled-coil 1 (CC1) region [2]. The extended conformation is triggered by calcium depletion at the ER that oligomerizes STIM1. The oligomers of STIM1 then translocate to a close distance between two opposing membranes, forming what is known as ER-PM junctions. STIM1 accumulates at ER-PM junctions conforming the denominated STIM1 puncta.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, United States of America
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, México
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
9
|
Cohen HA, Zomot E, Nataniel T, Militsin R, Palty R. The SOAR of STIM1 interacts with plasma membrane lipids to form ER-PM contact sites. Cell Rep 2023; 42:112238. [PMID: 36906853 DOI: 10.1016/j.celrep.2023.112238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Depletion of Ca2+ from the endoplasmic reticulum (ER) causes the ER Ca2+ sensor STIM1 to form membrane contact sites (MCSs) with the plasma membrane (PM). At the ER-PM MCS, STIM1 binds to Orai channels to induce cellular Ca2+ entry. The prevailing view of this sequential process is that STIM1 interacts with the PM and with Orai1 using two separate modules: a C-terminal polybasic domain (PBD) for the interaction with PM phosphoinositides and the STIM-Orai activation region (SOAR) for the interaction with Orai channels. Here, using electron and fluorescence microscopy and protein-lipid interaction assays, we show that oligomerization of the SOAR promotes direct interaction with PM phosphoinositides to trap STIM1 at ER-PM MCSs. The interaction depends on a cluster of conserved lysine residues within the SOAR and is co-regulated by the STIM1 coil-coiled 1 and inactivation domains. Collectively, our findings uncover a molecular mechanism for formation and regulation of ER-PM MCSs by STIM1.
Collapse
Affiliation(s)
- Hadas Achildiev Cohen
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elia Zomot
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Tomer Nataniel
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ruslana Militsin
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Raz Palty
- Department of Biochemistry, Technion Integrated Cancer Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
10
|
Pacheco J, Bohórquez-Hernández A, Méndez-Acevedo KM, Sampieri A, Vaca L. Roles of Cholesterol and PtdIns(4,5)P 2 in the Regulation of STIM1-Orai1 Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:305-326. [PMID: 36988886 DOI: 10.1007/978-3-031-21547-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Calcium is one of the most prominent second messengers. It is involved in a wide range of functions at the single-cell level but also in modulating regulatory mechanisms in the entire organism. One process mediating calcium signaling involves hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by the phospholipase-C (PLC). Thus, calcium and PtdIns(4,5)P2 are intimately intertwined two second-messenger cascades that often depend on each other. Another relevant lipid associated with calcium signaling is cholesterol. Both PtdIns(4,5)P2 and cholesterol play key roles in the formation and maintenance of specialized signaling nanodomains known as lipid rafts. Lipid rafts are particularly important in calcium signaling by concentrating and localizing calcium channels such as the Orai1 channel. Depletion of internal calcium stores is initiated by the production of inositol-1,4,5-trisphosphate (IP3). Calcium depletion from the ER induces the oligomerization of STIM1, which binds Orai1 and initiates calcium influx into the cell. In the present review, we analyzed the complex interactions between cholesterol, PtdIns(4,5)P2, and the complex formed by the Orai1 channel and the signaling molecule STIM1. We explore some of the complex mechanisms governing calcium homeostasis and phospholipid metabolism, as well as the interaction between these two apparently independent signaling cascades.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kevin M Méndez-Acevedo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- ZHK, German Center for Cardiovascular Research, Partner Site, Berlin, Germany
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México.
| |
Collapse
|
11
|
Sirko C, Novello MJ, Stathopulos PB. An S-glutathiomimetic Provides Structural Insights into Stromal Interaction Molecule-1 Regulation. J Mol Biol 2022; 434:167874. [PMID: 36332662 DOI: 10.1016/j.jmb.2022.167874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.
Collapse
Affiliation(s)
- Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Matthew J Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A5C1, Canada.
| |
Collapse
|
12
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
13
|
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium 2022; 106:102631. [PMID: 35853265 PMCID: PMC9444960 DOI: 10.1016/j.ceca.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The ER-resident proteins STIM1 together with the plasma membrane (PM)-localized Orai1 channels constitute the molecular components of the store-operated Ca2+ entry (SOCE) pathway. Prepositioning of STIM1 to the peripheral ER close to the PM ensures its efficient interaction with Orai1 upon a decrease in the ER luminal Ca2+ concentration. The C-terminal polybasic domain of STIM1 has been identified as mediating the interaction with PM phosphoinositides and hence positions the molecule to ER-PM contact sites. Here we show that STIM1 requires PM phosphatidylinositol 4-phosphate (PI4P) for efficient PM interaction. Accordingly, oxysterol binding protein related proteins (ORPs) that work at ER-PM junctions and consume PI4P gradients exert important control over the Ca2+ entry process. These studies reveal an important connection between non-vesicular lipid transport at ER-PM contact sites and regulation of ER Ca2+store refilling.
Collapse
Affiliation(s)
- Gergo Gulyas
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Carlos Ernesto Bastián Eugenio
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Liu C, Zhang Y, Ge L, Li L, Wu B, Wang J. Biochemical and NMR studies reveal specific interaction between STIMATE C-tail and PI(4,5)P 2 or PI(3,4,5)P 3-containing membrane. Biochem Biophys Res Commun 2022; 597:16-22. [PMID: 35121178 DOI: 10.1016/j.bbrc.2022.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
STIMATE is an endoplasmic reticulum (ER) resident membrane protein that plays key roles in regulating calcium signaling occurring at ER-plasma membrane (PM) junctions. It is also involved in the regulation of ER-PM junction maintenance. STIMATE contains multiple putative transmembrane domains with a polybasic C tail (STIMATE-CT) that directly interacts with stromal interaction molecule 1 (STIM1) to promote STIM1 conformational switch. Here using liposome pulldown assay, we show that STIMATE-CT can specifically interact with PI(4,5)P2 or PI(3,4,5)P3-containing membrane. NMR analysis indicates that STIMATE-CT is intrinsically disordered. Furthermore, NMR titration with bicelles and mutation analysis reveal that the regions of 242VRYR245 and 284KKKK287 in STIMATE-CT are both essential for its membrane binding.
Collapse
Affiliation(s)
- Chongxu Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Youjia Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Liang Ge
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ling Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
15
|
de Souza LB, Ong HL, Liu X, Ambudkar IS. PIP 2 and septin control STIM1/Orai1 assembly by regulating cytoskeletal remodeling via a CDC42-WASP/WAVE-ARP2/3 protein complex. Cell Calcium 2021; 99:102475. [PMID: 34601312 DOI: 10.1016/j.ceca.2021.102475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Store-operated calcium entry (SOCE) is triggered by assembly of Orai1 with STIM proteins in ER-PM junctions. Plasma membrane PIP2 as well as PIP2-binding protein, SEPT4, significantly impact Orai1-STIM1 interaction. While septins and PIP2 can organize the actin cytoskeleton, it is unclear whether the status of actin within the junctions contributes to SOCE. We report herein that actin remodeling modulates STIM1 clustering. Our findings show that a PIP2- and SEPT4-dependent mechanism involving CDC42, WASP/WAVE, and ARP2 regulates actin remodeling into a ring-like structure around STIM1 puncta. CDC42 localization in the ER-plasma membrane region is enhanced following ER-Ca2+ store depletion. PIP2 depletion or knockdown of SEPT4 attenuate the recruitment of CDC42 to the ER-PM region. Importantly, knockdown of SEPT4, or CDC42+ARP2, disrupts the organization of actin as well as STIM1 clustering. Consequently, Orai1 recruitment to STIM1 puncta, SOCE, and NFAT translocation to the nucleus are all attenuated. Ca2+ influx induced by STIM1-C terminus is not affected by CDC42 knockdown. In aggregate, our findings reveal that PIP2 and SEPT4 affect Orai1/STIM1 clustering by coordinating actin remodeling within ER-PM junctions. This dynamic reorganization of actin has an important role in regulation of SOCE and downstream Ca2+-dependent effector functions.
Collapse
Affiliation(s)
- Lorena Brito de Souza
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA.
| | - Xibao Liu
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, NIDCR, NIH, Bldg. 10/Room 1N-113, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Dynes JL, Yeromin AV, Cahalan MD. Cell-wide mapping of Orai1 channel activity reveals functional heterogeneity in STIM1-Orai1 puncta. J Gen Physiol 2021; 152:151900. [PMID: 32589186 PMCID: PMC7478869 DOI: 10.1085/jgp.201812239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Upon Ca2+ store depletion, Orai1 channels cluster and open at endoplasmic reticulum–plasma membrane (ER–PM) junctions in signaling complexes called puncta. Little is known about whether and how Orai1 channel activity may vary between individual puncta. Previously, we developed and validated optical recording of Orai channel activity, using genetically encoded Ca2+ indicators fused to Orai1 or Orai3 N or C termini. We have now combined total internal reflection fluorescence microscopy with whole-cell recording to map functional properties of channels at individual puncta. After Ca2+ store depletion in HEK cells cotransfected with mCherry-STIM1 and Orai1-GCaMP6f, Orai1-GCaMP6f fluorescence increased progressively with increasingly negative test potentials and robust responses could be recorded from individual puncta. Cell-wide fluorescence half-rise and -fall times during steps to −100 mV test potential indicated probe response times of <50 ms. The in situ Orai1-GCaMP6f affinity for Ca2+ was 620 nM, assessed by monitoring fluorescence using buffered Ca2+ solutions in “unroofed” cells. Channel activity and temporal activation profile were tracked in individual puncta using image maps and automated puncta identification and recording. Simultaneous measurement of mCherry-STIM1 fluorescence uncovered an unexpected gradient in STIM1/Orai1 ratio that extends across the cell surface. Orai1-GCaMP6f channel activity was found to vary across the cell, with inactive channels occurring in the corners of cells where the STIM1/Orai1 ratio was lowest; low-activity channels typically at edges displayed a slow activation phase lasting hundreds of milliseconds. Puncta with high STIM1/Orai1 ratios exhibited a range of channel activity that appeared unrelated to the stoichiometric requirements for gating. These findings demonstrate functional heterogeneity of Orai1 channel activity between individual puncta and establish a new experimental platform that facilitates systematic comparisons between puncta composition and activity.
Collapse
Affiliation(s)
- Joseph L Dynes
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA.,Institute for Immunology, University of California, Irvine, Irvine, CA
| |
Collapse
|
17
|
Regulation of Store-Operated Ca 2+ Entry by SARAF. Cells 2021; 10:cells10081887. [PMID: 34440656 PMCID: PMC8391525 DOI: 10.3390/cells10081887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Calcium (Ca2+) signaling plays a dichotomous role in cellular biology, controlling cell survival and proliferation on the one hand and cellular toxicity and cell death on the other. Store-operated Ca2+ entry (SOCE) by CRAC channels represents a major pathway for Ca2+ entry in non-excitable cells. The CRAC channel has two key components, the endoplasmic reticulum Ca2+ sensor stromal interaction molecule (STIM) and the plasma-membrane Ca2+ channel Orai. Physical coupling between STIM and Orai opens the CRAC channel and the resulting Ca2+ flux is regulated by a negative feedback mechanism of slow Ca2+ dependent inactivation (SCDI). The identification of the SOCE-associated regulatory factor (SARAF) and investigations of its role in SCDI have led to new functional and molecular insights into how SOCE is controlled. In this review, we provide an overview of the functional and molecular mechanisms underlying SCDI and discuss how the interaction between SARAF, STIM1, and Orai1 shapes Ca2+ signaling in cells.
Collapse
|
18
|
Rogov AG, Goleva TN, Epremyan KK, Kireev II, Zvyagilskaya RA. Propagation of Mitochondria-Derived Reactive Oxygen Species within the Dipodascus magnusii Cells. Antioxidants (Basel) 2021; 10:antiox10010120. [PMID: 33467672 PMCID: PMC7830518 DOI: 10.3390/antiox10010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mitochondria are considered to be the main source of reactive oxygen species (ROS) in the cell. It was shown that in cardiac myocytes exposed to excessive oxidative stress, ROS-induced ROS release is triggered. However, cardiac myocytes have a network of densely packed organelles that do not move, which is not typical for the majority of eukaryotic cells. The purpose of this study was to trace the spatiotemporal development (propagation) of prooxidant-induced oxidative stress and its interplay with mitochondrial dynamics. We used Dipodascus magnusii yeast cells as a model, as they have advantages over other models, including a uniquely large size, mitochondria that are easy to visualize and freely moving, an ability to vigorously grow on well-defined low-cost substrates, and high responsibility. It was shown that prooxidant-induced oxidative stress was initiated in mitochondria, far preceding the appearance of generalized oxidative stress in the whole cell. For yeasts, these findings were obtained for the first time. Preincubation of yeast cells with SkQ1, a mitochondria-addressed antioxidant, substantially diminished production of mitochondrial ROS, while only slightly alleviating the generalized oxidative stress. This was expected, but had not yet been shown. Importantly, mitochondrial fragmentation was found to be primarily induced by mitochondrial ROS preceding the generalized oxidative stress development.
Collapse
Affiliation(s)
- Anton G. Rogov
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Tatiana N. Goleva
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Khoren K. Epremyan
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Igor I. Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119992, Russia;
| | - Renata A. Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
- Correspondence:
| |
Collapse
|
19
|
Dong D, Fu Y, Chen F, Zhang J, Jia H, Li J, Wang H, Wen J. Hyperoxia sensitizes hypoxic HeLa cells to ionizing radiation by downregulating HIF‑1α and VEGF expression. Mol Med Rep 2021; 23:62. [PMID: 33215223 PMCID: PMC7706008 DOI: 10.3892/mmr.2020.11700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The current study investigated whether hyperoxia may reverse hypoxia‑induced radioresistance (RR) in cervical cancer. Human HeLa cells exposed to hypoxic, normoxic or hyperoxic conditions were irradiated using X‑rays. Cell proliferation and apoptosis were analyzed using MTT assays and flow cytometry. The expression levels of hypoxia‑inducible factor‑1α (HIF‑1α), VEGF165, VEGFRs, Akt and ERK were measured via western blotting and/or ELISA. The results demonstrated that hypoxia stimulated HIF‑1α and VEGF expression, and induced RR in HeLa cells. The administration of recombinant VEGF or the forced expression of VEGF promoted RR, whereas inactivating HIF‑1α or blocking the VEGF‑VEGFR interaction abrogated hypoxia‑induced RR. Notably, hyperoxia decreased the level of hypoxia‑stimulated HIF‑1α and VEGF, and enhanced radiosensitivity in hypoxic HeLa cells. The results demonstrated that hyperoxia suppressed the hypoxia‑activated Akt and ERK signaling pathways in HeLa cells. Therefore, a high O2 concentration may be considered as a radiotherapeutic sensitizer for hypoxic HeLa cells.
Collapse
Affiliation(s)
- Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Fu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feng Chen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiyan Jia
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huailin Wang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jihong Wen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
21
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
22
|
Store-Operated Calcium Channels: From Function to Structure and Back Again. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035055. [PMID: 31570335 DOI: 10.1101/cshperspect.a035055] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Store-operated calcium (Ca2+) entry (SOCE) occurs through a widely distributed family of ion channels activated by the loss of Ca2+ from the endoplasmic reticulum (ER). The best understood of these is the Ca2+ release-activated Ca2+ (CRAC) channel, which is notable for its unique activation mechanism as well as its many essential physiological functions and the diverse pathologies that result from dysregulation. In response to ER Ca2+ depletion, CRAC channels are formed through a diffusion trap mechanism at ER-plasma membrane (PM) junctions, where the ER Ca2+-sensing stromal interaction molecule (STIM) proteins bind and activate hexamers of Orai pore-forming proteins to trigger Ca2+ entry. Cell biological studies are clarifying the architecture of ER-PM junctions, their roles in Ca2+ and lipid transport, and functional interactions with cytoskeletal proteins. Molecular structures of STIM and Orai have inspired a multitude of mutagenesis and electrophysiological studies that reveal potential mechanisms for how STIM is toggled between inactive and active states, how it binds and activates Orai, and the importance of STIM-binding stoichiometry for opening the channel and establishing its signature characteristics of extremely high Ca2+ selectivity and low Ca2+ conductance.
Collapse
|
23
|
Niu L, Wu F, Li K, Li J, Zhang SL, Hu J, Wang Q. STIM1 interacts with termini of Orai channels in a sequential manner. J Cell Sci 2020; 133:jcs239491. [PMID: 32107289 DOI: 10.1242/jcs.239491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1.
Collapse
Affiliation(s)
- Liling Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fuyun Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Kaili Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
| |
Collapse
|
24
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|
25
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
26
|
de la Cruz L, Traynor-Kaplan A, Vivas O, Hille B, Jensen JB. Plasma membrane processes are differentially regulated by type I phosphatidylinositol phosphate 5-kinases and RASSF4. J Cell Sci 2020; 133:jcs.233254. [PMID: 31831523 DOI: 10.1242/jcs.233254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide lipids regulate many cellular processes and are synthesized by lipid kinases. Type I phosphatidylinositol phosphate 5-kinases (PIP5KIs) generate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2]. Several phosphoinositide-sensitive readouts revealed the nonequivalence of overexpressing PIP5KIβ, PIP5KIγ or Ras association domain family 4 (RASSF4), believed to activate PIP5KIs. Mass spectrometry showed that each of these three proteins increased total cellular phosphatidylinositol bisphosphates (PtdInsP 2) and trisphosphates (PtdInsP 3) at the expense of phosphatidylinositol phosphate (PtdInsP) without changing lipid acyl chains. Analysis of KCNQ2/3 channels and PH domains confirmed an increase in plasma membrane PtdIns(4,5)P 2 in response to PIP5KIβ or PIP5KIγ overexpression, but RASSF4 required coexpression with PIP5KIγ to increase plasma membrane PtdIns(4,5)P 2 Effects on the several steps of store-operated calcium entry (SOCE) were not explained by plasma membrane phosphoinositide increases alone. PIP5KIβ and RASSF4 increased STIM1 proximity to the plasma membrane, accelerated STIM1 mobilization and speeded onset of SOCE; however, PIP5KIγ reduced STIM1 recruitment but did not change induced Ca2+ entry. These differences imply actions through different segregated pools of phosphoinositides and specific protein-protein interactions and targeting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA.,Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Jill B Jensen
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| |
Collapse
|
27
|
Coordination of a Single Calcium Ion in the EF-hand Maintains the Off State of the Stromal Interaction Molecule Luminal Domain. J Mol Biol 2020; 432:367-383. [DOI: 10.1016/j.jmb.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
28
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
29
|
Bong AHL, Robitaille M, Milevskiy MJG, Roberts-Thomson SJ, Monteith GR. NCS-1 expression is higher in basal breast cancers and regulates calcium influx and cytotoxic responses to doxorubicin. Mol Oncol 2019; 14:87-104. [PMID: 31647602 PMCID: PMC6944103 DOI: 10.1002/1878-0261.12589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Neuronal calcium sensor‐1 (NCS‐1) is a positive modulator of IP3 receptors and was recently associated with poorer survival in breast cancers. However, the association between NCS‐1 and breast cancer molecular subtypes and the effects of NCS‐1 silencing on calcium (Ca2+) signaling in breast cancer cells remain unexplored. Herein, we report for the first time an increased expression of NCS‐1 in breast cancers of the basal molecular subtype, a subtype associated with poor prognosis. Using MDA‐MB‐231 basal breast cancer cells expressing the GCaMP6m Ca2+ indicator, we showed that NCS‐1 silencing did not result in major changes in cytosolic free Ca2+ increases as a result of endoplasmic reticulum Ca2+ store mobilization. However, NCS‐1 silencing suppressed unstimulated basal Ca2+ influx. NCS‐1 silencing in MDA‐MB‐231 cells also promoted necrotic cell death induced by the chemotherapeutic drug doxorubicin (1 µm). The effect of NCS‐1 silencing on cell death was phenocopied by silencing of ORAI1, a Ca2+ store‐operated Ca2+ channel that maintains Ca2+ levels in the endoplasmic reticulum Ca2+ store and whose expression was significantly positively correlated with NCS‐1 in clinical breast cancer samples. This newly identified association between NCS‐1 and basal breast cancers, together with the identification of the role of NCS‐1 in the regulation of the effects of doxorubicin in MDA‐MB‐231 breast cancer cells, suggests that NCS‐1 and/or pathways regulated by NCS‐1 may be important in the treatment of basal breast cancers in women.
Collapse
Affiliation(s)
- Alice H L Bong
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia
| | - Michael J G Milevskiy
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
30
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
31
|
Gudlur A, Zeraik AE, Hirve N, Hogan PG. STIM calcium sensing and conformational change. J Physiol 2019; 598:1695-1705. [PMID: 31228261 DOI: 10.1113/jp276524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/08/2022] Open
Abstract
The control of calcium influx at the plasma membrane by endoplasmic reticulum (ER) calcium stores, a process common to invertebrates and vertebrates, is central to physiological calcium signalling and cellular calcium balance. Stromal interaction molecule 1 (STIM1) is a calcium sensor and regulatory protein localized to the ER. ORAI1 is a calcium channel in the plasma membrane (PM). In outline, STIM1 senses an ER-luminal calcium decrease, relocalizes to ER-PM junctions, and recruits and gates ORAI1 channels. Recent work, reviewed here, has offered detailed insight into the process of sensing and communicating ER calcium-store depletion, and particularly into the STIM1 conformational change that is the basis for communication between the ER and the PM.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ana Eliza Zeraik
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Nupura Hirve
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Program in Immunology, University of California-San Diego, La Jolla, CA, 92037, USA.,Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
32
|
Yen M, Lewis RS. Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry. Cell Calcium 2019; 79:35-43. [PMID: 30807904 DOI: 10.1016/j.ceca.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
Abstract
Substantial progress has been made in the past several years in establishing the stoichiometries of STIM and Orai proteins and understanding their influence on store-operated calcium entry. Depletion of ER Ca2+ triggers STIM1 to accumulate at ER-plasma membrane junctions where it binds and opens Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 is a dimer, and release of Ca2+ from its two luminal domains is reported to promote their association as well as drive formation of higher-order STIM1 oligomers. The CRAC channel, originally thought to be tetrameric, is now considered to be a hexamer of Orai1 subunits based on crystallographic and electrophysiological studies. STIM1 binding activates CRAC channels in a highly nonlinear way, such that all six Orai1 binding sites must be occupied to account for the activation and signature properties of native channels. The structural basis of STIM1 engagement with the channel is currently unclear, with evidence suggesting that STIM1 dimers bind to individual or pairs of Orai1 subunits. This review examines evidence that has led to points of consensus and debate about STIM1 and Orai1 stoichiometries, and explains the importance of STIM-Orai complex stoichiometry for the regulation of store-operated calcium entry.
Collapse
Affiliation(s)
- Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
33
|
Gudlur A, Zeraik AE, Hirve N, Rajanikanth V, Bobkov AA, Ma G, Zheng S, Wang Y, Zhou Y, Komives EA, Hogan PG. Calcium sensing by the STIM1 ER-luminal domain. Nat Commun 2018; 9:4536. [PMID: 30382093 PMCID: PMC6208404 DOI: 10.1038/s41467-018-06816-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) monitors ER-luminal Ca2+ levels to maintain cellular Ca2+ balance and to support Ca2+ signalling. The prevailing view has been that STIM1 senses reduced ER Ca2+ through dissociation of bound Ca2+ from a single EF-hand site, which triggers a dramatic loss of secondary structure and dimerization of the STIM1 luminal domain. Here we find that the STIM1 luminal domain has 5-6 Ca2+-binding sites, that binding at these sites is energetically coupled to binding at the EF-hand site, and that Ca2+ dissociation controls a switch to a second structured conformation of the luminal domain rather than protein unfolding. Importantly, the other luminal-domain Ca2+-binding sites interact with the EF-hand site to control physiological activation of STIM1 in cells. These findings fundamentally revise our understanding of physiological Ca2+ sensing by STIM1, and highlight molecular mechanisms that govern the Ca2+ threshold for activation and the steep Ca2+ concentration dependence.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Ana Eliza Zeraik
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, CEP 13563-120, SP, Brazil
| | - Nupura Hirve
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - V Rajanikanth
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Andrey A Bobkov
- Protein Production and Analysis Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California-San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
The 2β Splice Variation Alters the Structure and Function of the Stromal Interaction Molecule Coiled-Coil Domains. Int J Mol Sci 2018; 19:ijms19113316. [PMID: 30366379 PMCID: PMC6274866 DOI: 10.3390/ijms19113316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecule (STIM)-1 and -2 regulate agonist-induced and basal cytosolic calcium (Ca2+) levels after oligomerization and translocation to endoplasmic reticulum (ER)-plasma membrane (PM) junctions. At these junctions, the STIM cytosolic coiled-coil (CC) domains couple to PM Orai1 proteins and gate these Ca2+ release-activated Ca2+ (CRAC) channels, which facilitate store-operated Ca2+ entry (SOCE). Unlike STIM1 and STIM2, which are SOCE activators, the STIM2β splice variant contains an 8-residue insert located within the conserved CCs which inhibits SOCE. It remains unclear if the 2β insert further depotentiates weak STIM2 coupling to Orai1 or independently causes structural perturbations which prevent SOCE. Here, we use far-UV circular dichroism, light scattering, exposed hydrophobicity analysis, solution small angle X-ray scattering, and a chimeric STIM1/STIM2β functional assessment to provide insights into the molecular mechanism by which the 2β insert precludes SOCE activation. We find that the 2β insert reduces the overall α-helicity and enhances the exposed hydrophobicity of the STIM2 CC domains in the absence of a global conformational change. Remarkably, incorporation of the 2β insert into the STIM1 context not only affects the secondary structure and hydrophobicity as observed for STIM2, but also eliminates the more robust SOCE response mediated by STIM1. Collectively, our data show that the 2β insert directly precludes Orai1 channel activation by inducing structural perturbations in the STIM CC region.
Collapse
|
35
|
Calcium store refilling and STIM activation in STIM- and Orai-deficient cell lines. Pflugers Arch 2018; 470:1555-1567. [PMID: 29934936 PMCID: PMC6153602 DOI: 10.1007/s00424-018-2165-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/02/2022]
Abstract
Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca2+ entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca2+ signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca2+ and Ca2+ signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca2+ stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca2+ stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca2+ but is dispensable for the maintenance of long-term ER Ca2+ homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM11–491 and STIM11–666 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.
Collapse
|
36
|
Chang CL, Chen YJ, Quintanilla CG, Hsieh TS, Liou J. EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca 2+ entry. J Cell Biol 2018; 217:2047-2058. [PMID: 29563214 PMCID: PMC5987725 DOI: 10.1083/jcb.201711151] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) after ER Ca2+ depletion. STIM1 also interacts with EB1 and dynamically tracks microtubule (MT) plus ends. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with a synthetic construct approach, we found that EB1 binding constitutes a trapping mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. By trapping STIM1 molecules at dynamic contacts between the ER and MT plus ends, EB1 binding delayed STIM1 translocation to ER-PM junctions during ER Ca2+ depletion and prevented excess SOCE and ER Ca2+ overload. Our study suggests that STIM1-EB1 interaction shapes the kinetics and amplitude of local SOCE in cellular regions with growing MTs and contributes to spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yu-Ju Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Ting-Sung Hsieh
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
37
|
Liu YN, Lu XX, Ren A, Shi L, Zhu J, Jiang AL, Yu HS, Zhao MW. Conversion of phosphatidylinositol (PI) to PI4-phosphate (PI4P) and then to PI(4,5)P 2 is essential for the cytosolic Ca 2+ concentration under heat stress in Ganoderma lucidum. Environ Microbiol 2018; 20:2456-2468. [PMID: 29697195 DOI: 10.1111/1462-2920.14254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
Abstract
How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI-4-kinase and PI-4-phosphate-5-kinase activities are activated and that their lipid products PI-4-phosphate and PI-4,5-bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca2+ ([Ca2+ ]c ) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li+ , an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI-4-phosphate. Furthermore, inhibition of PI-4-kinases resulted in a decrease in the Ca2+ and GA contents under HS that could be rescued by PI-4-phosphate but not PI. However, the decrease in the Ca2+ and GA contents by silencing of PI-4-phosphate-5-kinase could not be rescued by PI-4-phosphate. Taken together, our study reveals the essential role of the step converting PI to PI-4-phosphate and then to PI-4,5-bisphosphate in [Ca2+ ]c signalling and GA biosynthesis under HS.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Xiao-Xiao Lu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Han-Shou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| |
Collapse
|
38
|
Novello MJ, Zhu J, Feng Q, Ikura M, Stathopulos PB. Structural elements of stromal interaction molecule function. Cell Calcium 2018; 73:88-94. [PMID: 29698850 DOI: 10.1016/j.ceca.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
Abstract
Stromal interaction molecule (STIM)-1 and -2 are multi-domain, single-pass transmembrane proteins involved in sensing changes in compartmentalized calcium (Ca2+) levels and transducing this cellular signal to Orai1 channel proteins. Our understanding of the molecular mechanisms underlying STIM signaling has been dramatically improved through available X-ray crystal and solution NMR structures. This high-resolution structural data has revealed that intricate intramolecular and intermolecular protein-protein interactions are involved in converting STIMs from the quiescent to activation-competent states. This review article summarizes the current high resolution structural data on specific EF-hand, sterile α motif and coiled-coil interactions which drive STIM function in the activation of Orai1 channels. Further, the work discusses the effects of post-translational modifications on the structure and function of STIMs. Future structural studies on larger STIM:Orai complexes will be critical to fully defining the molecular bases for STIM function and how post-translational modifications influence these mechanisms.
Collapse
Affiliation(s)
- Matthew J Novello
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jinhui Zhu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
39
|
Bouron A. Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons. Biochem Pharmacol 2018; 152:244-251. [PMID: 29630867 DOI: 10.1016/j.bcp.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
Live-cell imaging experiments were performed with the fluorescent Ca2+ and Zn2+ probes Fluo-4 and FluoZin-3 on cultured cortical neurons dissociated from embryonic mice to investigate the effects of the cannabinoids anandamide (AEA), cannabidiol (CBD), and N-arachidonoyl glycine (NAGly) on neuronal store-operated Ca2+ entry (SOCE). When tested individually AEA, CBD or NAGly inhibited SOCE. CBD and NAGly also released Ca2+ from the endoplasmic reticulum. Furthermore, NAGly mobilized Zn2+ from a store distinct from the endoplasmic reticulum and mitochondria, and up-regulated the thapsigargin-evoked Ca2+ release. All these effects developed in a cannabinoid receptor CB1/2 independent manner via an intracellular pathway sensitive to the GPR55 antagonist ML193. Evidence is presented that cannabinoids influence Ca2+ and Zn2+ signaling in central nervous system neurons. The lipid sensing receptor GPR55 seems to be a central actor governing these responses. In addition, the alteration of the cytosolic Zn2+ levels produced by NAGly provides support for the existence of a connection between endocannabinoids and Zn2+ signaling in the brain.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| |
Collapse
|
40
|
Chouaki Benmansour N, Ruminski K, Sartre AM, Phelipot MC, Salles A, Bergot E, Wu A, Chicanne G, Fallet M, Brustlein S, Billaudeau C, Formisano A, Mailfert S, Payrastre B, Marguet D, Brasselet S, Hamon Y, He HT. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation. Sci Rep 2018; 8:4966. [PMID: 29563576 PMCID: PMC5862878 DOI: 10.1038/s41598-018-23109-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositides (PIs) play important roles in numerous membrane-based cellular activities. However, their involvement in the mechanism of T cell receptor (TCR) signal transduction across the plasma membrane (PM) is poorly defined. Here, we investigate their role, and in particular that of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in TCR PM dynamics and activity in a mouse T-cell hybridoma upon ectopic expression of a PM-localized inositol polyphosphate-5-phosphatase (Inp54p). We observed that dephosphorylation of PI(4,5)P2 by the phosphatase increased the TCR/CD3 complex PM lateral mobility prior stimulation. The constitutive and antigen-elicited CD3 phosphorylation as well as the antigen-stimulated early signaling pathways were all found to be significantly augmented in cells expressing the phosphatase. Using state-of-the-art biophotonic approaches, we further showed that PI(4,5)P2 dephosphorylation strongly promoted the CD3ε cytoplasmic domain unbinding from the PM inner leaflet in living cells, thus resulting in an increased CD3 availability for interactions with Lck kinase. This could significantly account for the observed effects of PI(4,5)P2 dephosphorylation on the CD3 phosphorylation. Our data thus suggest that PIs play a key role in the regulation of the TCR/CD3 complex dynamics and activation at the PM.
Collapse
Affiliation(s)
| | - Kilian Ruminski
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anne-Marie Sartre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Marie-Claire Phelipot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Audrey Salles
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,UTechS Photonic BioImaging (Imagopole) Citech, Institut Pasteur, Paris, 75724, France
| | - Elise Bergot
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ambroise Wu
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse 3, Toulouse, France
| | - Mathieu Fallet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Brustlein
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Cyrille Billaudeau
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anthony Formisano
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sébastien Mailfert
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse 3, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Didier Marguet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13397, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Hai-Tao He
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
41
|
Yao JH, Liu ZJ, Yi JH, Wang J, Liu YN. Hepatitis B Virus X Protein Upregulates Intracellular Calcium Signaling by Binding C-terminal of Orail Protein. Curr Med Sci 2018; 38:26-34. [PMID: 30074148 DOI: 10.1007/s11596-018-1843-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus X (HBx) protein plays a pivotal role in the development of hepatitis B virus (HBV)-associated hepatocellular carcinoma. Although regulation of cytosolic calcium is essential for HBV replication and is mediated by HBx protein, the mechanism of HBx protein regulating intracellular calcium level remains poorly understood. The present study examined whether HBx protein elevated the intracellular calcium through interacting with storeoperated calcium entry (SOCE) components, Orail and stromal interaction molecule 1, and then identified the targets of HBx protein, with an attempt to understand the mechanism of HBx protein upsetting intracellular calcium homeostasis. By employing co-immunoprecipitation and GST-pull-down assay, we found that Orail protein interacted with HBx protein, and the C-terminus of Orail was implicated in the interaction. Confocal microscopy also revealed that HBx protein could co-localize with full-length Orail protein in HEK293 cells. Moreover, live cell calcium imaging exhibited that HBx protein elevated intracellular calcium, possibly by binding to SOCE components. Our results suggest that HBx protein binds to STIM1-Orail complexes to positively regulate the activity of plasma membrane store-operated calcium channels.
Collapse
Affiliation(s)
- Jing-Hong Yao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zi-Jian Liu
- Department of Anatomy, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Hua Yi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Wang
- Department of Gastroenterology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ya-Nan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
42
|
Balla T. Ca 2+ and lipid signals hold hands at endoplasmic reticulum-plasma membrane contact sites. J Physiol 2018; 596:2709-2716. [PMID: 29210464 DOI: 10.1113/jp274957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Discovery of the STIM1 and Orai proteins as the principal components of store-operated Ca2+ entry has drawn attention to contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM). Such contacts between adjacent membranes of different cellular organelles, primarily between the mitochondria and the ER, had already been known as the sites where Ca2+ released from the ER can be efficiently channelled to the mitochondria and also where phosphatidylserine synthesis and transfer takes place. Recent studies have identified contact sites between virtually every organelle and the ER and the functional importance of these small specialized membrane domains is increasingly recognized. Most recent developments have highlighted the role of phosphatidylinositol 4-phosphate gradients as critical determinants of the non-vesicular transport of various lipids from the ER to other organelles such as the Golgi or PM. As we learn more about membrane contact sites it becomes apparent that Ca2+ is not only transported at these sites but also controls both the dynamics and the lipid transfer efficiency of these processes. Conversely, lipids are critical for regulating the Ca2+ entry process. This review will summarize some of the most exciting recent developments in this rapidly expanding research field.
Collapse
Affiliation(s)
- Tamas Balla
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Zhu J, Feng Q, Stathopulos PB. The STIM-Orai Pathway: STIM-Orai Structures: Isolated and in Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:15-38. [PMID: 28900907 DOI: 10.1007/978-3-319-57732-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Considerable progress has been made elucidating the molecular mechanisms of calcium (Ca2+) sensing by stromal interaction molecules (STIMs) and the basis for Orai channel activity. This chapter focuses on the available high-resolution structural details of STIM and Orai proteins with respect to the regulation of store-operated Ca2+ entry (SOCE). Solution structures of the Ca2+-sensing domains of STIM1 and STIM2 are reviewed in detail, crystal structures of cytosolic coiled-coil STIM fragments are discussed, and an overview of the closed Drosophila melanogaster Orai hexameric structure is provided. Additionally, we highlight structures of human Orai1 N-terminal and C-terminal domains in complex with calmodulin and human STIM1, respectively. Ultimately, the accessible structural data are discussed in terms of potential mechanisms of action and cohesiveness with functional observations.
Collapse
Affiliation(s)
- Jinhui Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.
| |
Collapse
|
44
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
45
|
Inoh Y, Haneda A, Tadokoro S, Yokawa S, Furuno T. Cationic liposomes suppress intracellular calcium ion concentration increase via inhibition of PI3 kinase pathway in mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2461-2466. [PMID: 28966111 DOI: 10.1016/j.bbamem.2017.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes (antisense DNA, plasmid DNA, siRNA, etc.) into target cells. Cationic liposomes are also known to affect cellular immunocompetences such as the mast cell function in allergic reactions. In particular, we previously showed that the cationic liposomes bound to the mast cell surface suppress the degranulation induced by cross-linking of high affinity IgE receptors in a time- and dose-dependent manner. This suppression is mediated by impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via inhibition of store-operated Ca2+ entry (SOCE). Here we study the mechanism underlying an impaired [Ca2+]i increase by cationic liposomes in mast cells. We show that cationic liposomes inhibit the phosphorylation of Akt and PI3 kinases but not Syk and LAT. As a consequence, SOCE is suppressed but Ca2+ release from endoplasmic reticulum (ER) is not. Cationic liposomes inhibit the formation of STIM1 puncta, which is essential to SOCE by interacting with Orai1 following the Ca2+ concentration decrease in the ER. These data suggest that cationic liposomes suppress SOCE by inhibiting the phosphorylation of PI3 and Akt kinases in mast cells.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Aki Haneda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Satoshi Tadokoro
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
46
|
Liu YN, Lu XX, Chen D, Lu YP, Ren A, Shi L, Zhu J, Jiang AL, Yu HS, Zhao MW. Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum. Environ Microbiol 2017; 19:4657-4669. [PMID: 28892293 DOI: 10.1111/1462-2920.13928] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
Phospholipid-mediated signal transduction plays a key role in responses to environmental changes, but little is known about the role of phospholipid signalling in microorganisms. Heat stress (HS) is one of the most important environmental factors. Our previous study found that HS could induce the biosynthesis of the secondary metabolites, ganoderic acids (GA). Here, we performed a comprehensive mass spectrometry-based analysis to investigate HS-induced lipid remodelling in Ganoderma lucidum. In particular, we observed a significant accumulation of phosphatidic acid (PA) on HS. Further genetic tests in which pld-silencing strains were constructed demonstrated that the accumulation of PA is dependent on HS-activated phospholipase D (PLD) hydrolysing phosphatidylethanolamine. Furthermore, we determined the role of PLD and PA in HS-induced secondary metabolism in G. lucidum. Exogenous 1-butanol, which decreased PLD-mediated formation of PA, reverses the increased GA biosynthesis that was elicited by HS. The pld-silenced strains partly blocked HS-induced GA biosynthesis, and this block can be reversed by adding PA. Taken together, our results suggest that PLD and PA are involved in the regulation of HS-induced secondary metabolism in G. lucidum. Our findings provide key insights into how microorganisms respond to heat stress and then consequently accumulate secondary metabolites by phospholipid remodelling.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Xiao-Xiao Lu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Dai Chen
- Biological experiment teaching center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ya-Ping Lu
- Biological experiment teaching center, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Han-Shou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| |
Collapse
|
47
|
He L, Jing J, Zhu L, Tan P, Ma G, Zhang Q, Nguyen NT, Wang J, Zhou Y, Huang Y. Optical control of membrane tethering and interorganellar communication at nanoscales. Chem Sci 2017; 8:5275-5281. [PMID: 28959426 PMCID: PMC5606013 DOI: 10.1039/c7sc01115f] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) forms an extensive intracellular membranous network in eukaryotes that dynamically connects and communicates with diverse subcellular compartments such as plasma membrane (PM) through membrane contact sites (MCSs), with the inter-membrane gaps separated by a distance of 10-40 nm. Phosphoinositides (PI) constitute an important class of cell membrane phospholipids shared by many MCSs to regulate a myriad of cellular events, including membrane trafficking, calcium homeostasis and lipid metabolism. By installing photosensitivity into a series of engineered PI-binding domains with minimal sizes, we have created an optogenetic toolkit (designated as 'OptoPB') to enable rapid and reversible control of protein translocation and inter-membrane tethering at MCSs. These genetically-encoded, single-component tools can be used as scaffolds for grafting lipid-binding domains to dissect molecular determinants that govern protein-lipid interactions in living cells. Furthermore, we have demonstrated the use of OptoPB as a versatile fusion tag to photomanipulate protein translocation toward PM for reprogramming of PI metabolism. When tethered to the ER membrane with the insertion of flexible spacers, OptoPB can be applied to reversibly photo-tune the gap distances at nanometer scales between the two organellar membranes at MCSs, and to gauge the distance requirement for the free diffusion of protein complexes into MCSs. Our modular optical tools will find broad applications in non-invasive and remote control of protein subcellular localization and interorganellar contact sites that are critical for cell signaling.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Ji Jing
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Lei Zhu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Chinese Academy of Sciences , Hefei 230031 , Anhui , China .
| | - Peng Tan
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Guolin Ma
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Qian Zhang
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
- Department of Infectious Diseases , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Nhung T Nguyen
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Junfeng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology , Chinese Academy of Sciences , Hefei 230031 , Anhui , China .
| | - Yubin Zhou
- Center for Translational Cancer Research , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| | - Yun Huang
- Center for Epigenetics and Disease Prevention , Institute of Biosciences and Technology , Department of Medical Physiology , College of Medicine , Texas A&M University , Houston , TX 77030 , USA .
| |
Collapse
|
48
|
Chen YJ, Chang CL, Lee WR, Liou J. RASSF4 controls SOCE and ER-PM junctions through regulation of PI(4,5)P 2. J Cell Biol 2017; 216:2011-2025. [PMID: 28600435 PMCID: PMC5496610 DOI: 10.1083/jcb.201606047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/18/2016] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
RAS association domain family 4 (RASSF4) is involved in tumorigenesis. Chen et al. show that RASSF4 regulates store-operated Ca2+ entry and ER–PM junctions by affecting PI(4,5)P2 levels. RASSF4 interacts with and regulates the activity of ARF6, an upstream regulator of PIP5K and PI(4,5)P2. RAS association domain family 4 (RASSF4) is involved in tumorigenesis and regulation of the Hippo pathway. In this study, we identify new functional roles of RASSF4. First, we discovered that RASSF4 regulates store-operated Ca2+ entry (SOCE), a fundamental Ca2+ signaling mechanism, by affecting the translocation of the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) to ER–plasma membrane (PM) junctions. It was further revealed that RASSF4 regulates the formation of ER–PM junctions and the ER–PM tethering function of extended synaptotagmins E-Syt2 and E-Syt3. Moreover, steady-state PM phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) levels, important for localization of STIM1 and E-Syts at ER–PM junctions, were reduced in RASSF4-knockdown cells. Furthermore, we demonstrated that RASSF4 interacts with and regulates the activity of adenosine diphosphate ribosylation factor 6 (ARF6), a small G protein and upstream regulator of type I phosphatidylinositol phosphate kinases (PIP5Ks) and PM PI(4,5)P2 levels. Overall, our study suggests that RASSF4 controls SOCE and ER–PM junctions through ARF6-dependent regulation of PM PI(4,5)P2 levels, pivotal for a variety of physiological processes.
Collapse
Affiliation(s)
- Yu-Ju Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Chi-Lun Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
49
|
Chang CL, Chen YJ, Liou J. ER-plasma membrane junctions: Why and how do we study them? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1494-1506. [PMID: 28554772 DOI: 10.1016/j.bbamcr.2017.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Ju Chen
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jen Liou
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|