1
|
Zhao P, Javed S, Shi X, Wu B, Zhang D, Xu S, Wang X. Varying Architecture of Heat Shock Elements Contributes to Distinct Magnitudes of Target Gene Expression and Diverged Biological Pathways in Heat Stress Response of Bread Wheat. Front Genet 2020; 11:30. [PMID: 32117446 PMCID: PMC7010933 DOI: 10.3389/fgene.2020.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
The heat shock transcription factor (HSF) binds to cis-regulatory motifs known as heat shock elements (HSEs) to mediate the transcriptional response of HSF target genes. However, the HSF-HSEs interaction is not clearly understood. Using the newly released genome reference sequence of bread wheat, we identified 39,478 HSEs (95.6% of which were non-canonical HSEs) and collapsed them into 30,604 wheat genes, accounting for 27.6% wheat genes. Using the intensively heat-responsive transcriptomes of wheat, we demonstrated that canonical HSEs have a higher propensity to induce a response in the closest downstream genes than non-canonical HSEs. However, the response magnitude induced by non-canonical HSEs was comparable to that induced by canonical HSEs. Significantly, some non-canonical HSEs that contain mismatched nucleotides at specific positions within HSEs had a larger response magnitude than that of canonical HSEs. Consistently, most of the HSEs identified in the promoter regions of heat shock proteins were non-canonical HSEs, suggesting an important role for these non-canonical HSEs. Lastly, distinct diverged biological processes were observed between genes containing different HSE types, suggesting that sequence variation in HSEs plays a key role in the evolution of heat responses and adaptation. Our results provide a new perspective to understand the regulatory network underlying heat responses.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Sidra Javed
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Bingjin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongzhi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Nagashimada M, Ueda T, Ishita Y, Sakurai H. TAF7 is a heat‐inducible unstable protein and is required for sustained expression of heat shock protein genes. FEBS J 2018; 285:3215-3224. [DOI: 10.1111/febs.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Takumi Ueda
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Yuichiro Ishita
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Hiroshi Sakurai
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| |
Collapse
|
3
|
|
4
|
Millson SH, Piper PW. Insights from yeast into whether the inhibition of heat shock transcription factor (Hsf1) by rapamycin can prevent the Hsf1 activation that results from treatment with an Hsp90 inhibitor. Oncotarget 2015; 5:5054-64. [PMID: 24970820 PMCID: PMC4148121 DOI: 10.18632/oncotarget.2077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In human cells TORC1 mTOR (target of rapamycin) protein kinase complex renders heat shock transcription factor 1 (Hsf1) competent for stress activation. In such cells, as well as in yeast, the selective TORC1 inhibitor rapamycin blocks this activation in contrast to Hsp90 inhibitors which potently activate Hsf1. Potentially therefore rapamycin could prevent the Hsf1 activation that frequently compromises the efficiency of Hsp90 inhibitor cancer drugs. Little synergy was found between the effects of rapamycin and the Hsp90 inhibitor radicicol on yeast growth. However certain rapamycin resistance mutations sensitised yeast to Hsp90 inhibitor treatment and an Hsp90 mutation that overactivates Hsf1 sensitised cells to rapamycin. Rapamycin inhibition of the yeast Hsf1 was abolished by this Hsp90 mutation, as well as with the loss of Ppt1, the Hsp90-interacting protein phosphatase that is the ortholog of mammalian PP5. Unexpectedly Hsf1 activation was found to have a requirement for the rapamycin binding immunophilin FKBP12 even in the absence of rapamycin, while TORC1 “bypass” strains revealed that the rapamycin inhibition of yeast Hsf1 is not exerted through two of the major downstream targets of TORC1, the protein phosphatase regulator Tap42 and the protein kinase Sch9 – the latter the ortholog of human S6 protein kinase 1. Significance: A problem with most of the Hsp90 inhibitor drugs now in cancer clinic trials is that they potently activate Hsf1. This leads to an induction of heat shock proteins, many of which have a “pro-survival” role in that they help to protect cells from apopotosis. As the activation of Hsf1 requires TORC1, inhibitors of mTOR kinase could potentially block this activation of Hsf1 and be of value when used in combination drug therapies with Hsp90 inhibitors. However many of the mechanistic details of the TORC1 regulation of Hsf1, as well as the interplay between cellular resistances to rapamycin and to Hsp90 inhibitors, still remain to be resolved.
Collapse
Affiliation(s)
- Stefan H Millson
- Dept. of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Peter W Piper
- Dept. of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
5
|
Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation. Mol Cell Biol 2015; 35:2530-40. [PMID: 25963659 DOI: 10.1128/mcb.00816-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 05/04/2015] [Indexed: 12/31/2022] Open
Abstract
In mammals the stress-inducible expression of genes encoding heat shock proteins is under the control of the heat shock transcription factor 1 (HSF1). Activation of HSF1 is a multistep process, involving trimerization, acquisition of DNA-binding and transcriptional activities, which coincide with several posttranslational modifications. Stress-inducible phosphorylation of HSF1, or hyperphosphorylation, which occurs mainly within the regulatory domain (RD), has been proposed as a requirement for HSF-driven transcription and is widely used for assessing HSF1 activation. Nonetheless, the contribution of hyperphosphorylation to the activity of HSF1 remains unknown. In this study, we generated a phosphorylation-deficient HSF1 mutant (HSF1Δ∼PRD), where the 15 known phosphorylation sites within the RD were disrupted. Our results show that the phosphorylation status of the RD does not affect the subcellular localization and DNA-binding activity of HSF1. Surprisingly, under stress conditions, HSF1Δ∼PRD is a potent transactivator of both endogenous targets and a reporter gene, and HSF1Δ∼PRD has a reduced activation threshold. Our results provide the first direct evidence for uncoupling stress-inducible phosphorylation of HSF1 from its activation, and we propose that the phosphorylation signature alone is not an appropriate marker for HSF1 activity.
Collapse
|
6
|
Sakurai H, Sawai M, Ishikawa Y, Ota A, Kawahara E. Heat shock transcription factor HSF1 regulates the expression of the Huntingtin-interacting protein HYPK. Biochim Biophys Acta Gen Subj 2013; 1840:1181-7. [PMID: 24361604 DOI: 10.1016/j.bbagen.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Huntingtin-interacting protein HYPK possesses chaperone-like activity. We hypothesized that the expression of HYPK could be regulated by heat shock factor HSF1, a transcriptional regulator of chaperone genes. METHODS HYPK expression in HeLa cells was assessed by RT-PCR and Western blot analysis. In vivo binding of HSF1 to the HYPK promoter was analyzed by chromatin immunoprecipitation assays. The requirement for HYPK in heat-shocked cells was examined using HYPK-knockdown cells. RESULTS Levels of HYPK mRNA were slightly increased by heat treatment; however, the levels decreased in HSF1-silenced cells. The HYPK promoter was bound by HSF1 in a heat-inducible manner; however, its core promoter activity was notably suppressed upon heat shock. When cells were exposed to heat shock, silencing HYPK caused a decrease in cell viability. CONCLUSIONS HYPK is a novel target gene of HSF1. HSF1 maintains HYPK expression in heat-shocked cells. GENERAL SIGNIFICANCE The maintenance of HYPK expression by HSF1 is necessary for the survival of cells under thermal stress conditions.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | - Maki Sawai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ei Kawahara
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
7
|
Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:930-6. [DOI: 10.1016/j.bbagrm.2013.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022]
|
8
|
Swan CL, Evans TG, Sylvain N, Krone PH. Zebrafish HSF4: a novel protein that shares features of both HSF1 and HSF4 of mammals. Cell Stress Chaperones 2012; 17:623-37. [PMID: 22528049 PMCID: PMC3535164 DOI: 10.1007/s12192-012-0337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 12/21/2022] Open
Abstract
Heat-shock proteins (hsps) have important roles in the development of the eye lens. We previously demonstrated that knockdown of hsp70 gene expression using morpholino antisense technology resulted in an altered lens phenotype in zebrafish embryos. A less severe phenotype was seen with knockdown of heat-shock factor 1 (HSF1), suggesting that, while it likely plays a role in hsp70 regulation during lens formation, other regulatory factors are also involved. Heat-shock factor 4 plays an important role in mammalian lens development, and an expressed sequence tag encoding zebrafish HSF4 has been identified. The deduced amino acid sequence shares structural similarities with mammalian HSF4 including the lack of an HR-C domain. However, the HR-C domain is absent due to a severe C-terminal truncation within zebrafish HSF4 (zHSF4) relative to the mammalian protein. Surprisingly, the amino acid composition of the zHSF4 DNA binding domain shares a greater degree of identity with HSF1 proteins than it does with mammalian HSF4 proteins. Consistent with this, the binding affinity of in vitro synthesized zHSF4 for discontinuous heat-shock response element sequences is more limited, similar to what has been previously observed for HSF1 proteins. Hsf4 mRNA is expressed in zebrafish adult eye tissue but is only observed in developing embryonic tissue at 60 h post-fertilization or later. This, together with the lack of an observable phenotype following morpholino-based antisense knockdown of hsf4, suggests that zHSF4 is unlikely to play a role in regulating early embryonic lens development.
Collapse
Affiliation(s)
- Cynthia L. Swan
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Tyler G. Evans
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
- />Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - Nicole Sylvain
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Patrick H. Krone
- />Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 104 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
9
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
10
|
Diversity in DNA recognition by heat shock transcription factors (HSFs) from model organisms. FEBS Lett 2011; 585:1293-8. [PMID: 21510947 DOI: 10.1016/j.febslet.2011.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 11/22/2022]
Abstract
Heat shock transcription factor (HSF), an evolutionarily conserved heat-responsive regulator, binds to heat shock elements (HSEs) comprising continuous inverted repeats of the pentamer nGAAn. Here, we analyzed DNA-binding ability, particularly for the discontinuously arranged nGAAn units, of HSFs from various organisms, including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio. Among these, only C. elegans HSF failed to bind the discontinuous nGAAn units, which suggests that the target genes of HSFs in many, but not all, organisms contain discontinuous HSEs, as well as continuous HSEs. Further analysis of alternatively spliced HSF isoforms showed the importance of the C-terminal region in HSF-HSE interaction.
Collapse
|
11
|
Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers (Basel) 2011; 3:1158-81. [PMID: 24212658 PMCID: PMC3756408 DOI: 10.3390/cancers3011158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/23/2011] [Indexed: 12/17/2022] Open
Abstract
Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.
Collapse
|
12
|
Sakurai H, Enoki Y. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 2010; 277:4140-9. [PMID: 20945530 DOI: 10.1111/j.1742-4658.2010.07829.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock factor (HSF) is an evolutionarily conserved stress-response regulator that activates the transcription of heat shock protein genes, whose products maintain protein homeostasis under normal physiological conditions, as well as under conditions of stress. The promoter regions of the target genes contain a heat shock element consisting of multiple inverted repeats of the pentanucleotide sequence nGAAn. A single HSF of yeast can bind to heat shock elements that differ in the configuration of the nGAAn units and can regulate the transcription of various genes that function not only in stress resistance, but also in a broad range of biological processes. Mammalian cells have four HSF family members involved in different, but in some cases similar, biological functions, including stress resistance, cell differentiation and development. Mammalian HSF family members exhibit differential specificity for different types of heat shock elements, which, together with cell type-specific expression of HSFs is important in determining the target genes of each HSF. This minireview focuses on the molecular mechanisms of DNA recognition, chromatin modulation and gene expression by yeast and mammalian HSFs.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan.
| | | |
Collapse
|
13
|
Mondal A, Bhattacharya R, Ganguly T, Mukhopadhyay S, Basu A, Basak S, Chattopadhyay D. Elucidation of functional domains of Chandipura virus Nucleocapsid protein involved in oligomerization and RNA binding: implication in viral genome encapsidation. Virology 2010; 407:33-42. [PMID: 20727566 DOI: 10.1016/j.virol.2010.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/04/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Chandipura virus, a member of the vesiculovirus genera, has been recently recognized as an emerging human pathogen. Previously, we have shown that Chandipura virus Nucleocapsid protein N is capable of binding to both specific viral leader RNA as well as non-viral RNA sequences, albeit in distinct monomeric and oligomeric states, respectively. Here, we distinguish the regions of N involved in oligomerization and RNA binding using a panel of deletion mutants. We demonstrate that deletion in the N-terminal arm completely abrogates self-association of N protein. Monomer N specifically recognizes viral leader RNA using its C-terminal 102 residues, while oligomerization generates an additional RNA binding surface involving the N-terminal 320 amino acids of N overlapping with a protease resistant core that is capable of forming nucleocapsid like structure and also binding heterogeneous RNA sequences. Finally, we propose a model to explain the mechanism of genome encapsidation of this important human pathogen.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
14
|
DNA-binding and transcriptional activities of human HSF4 containing mutations that associate with congenital and age-related cataracts. Biochim Biophys Acta Mol Basis Dis 2010; 1802:749-53. [PMID: 20670914 DOI: 10.1016/j.bbadis.2010.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 12/30/2022]
Abstract
Heat shock transcription factor HSF4 is necessary for ocular lens development and fiber cell differentiation. Mutations of the human HSF4 gene have been implicated in congenital and age-related cataracts. Here, we show that HSF4 activates transcription of genes encoding crystallins and beaded filament structural proteins in lens epithelial cells. Five missense mutations that have been associated with congenital cataract inhibited DNA-binding of HSF4, which demonstrates the relationship between HSF4 mutations, loss of lens protein gene expression, and cataractogenesis. However, two missense mutations that have been associated with age-related cataract did not or only slightly alter HSF4 activity, implying that other genetic and environmental factors affect the functions of these mutant proteins.
Collapse
|
15
|
Tian S, Haney RA, Feder ME. Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila. PLoS One 2010; 5:e10669. [PMID: 20498853 PMCID: PMC2871787 DOI: 10.1371/journal.pone.0010669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
Heat-shock genes have a well-studied control mechanism for their expression that is mediated through cis-regulatory motifs known as heat-shock elements (HSEs). The evolution of important features of this control mechanism has not been investigated in detail, however. Here we exploit the genome sequencing of multiple Drosophila species, combined with a wealth of available information on the structure and function of HSEs in D. melanogaster, to undertake this investigation. We find that in single-copy heat shock genes, entire HSEs have evolved or disappeared 14 times, and the phylogenetic approach bounds the timing and direction of these evolutionary events in relation to speciation. In contrast, in the multi-copy gene Hsp70, the number of HSEs is nearly constant across species. HSEs evolve in size, position, and sequence within heat-shock promoters. In turn, functional significance of certain features is implicated by preservation despite this evolutionary change; these features include tail-to-tail arrangements of HSEs, gapped HSEs, and the presence or absence of entire HSEs. The variation among Drosophila species indicates that the cis-regulatory encoding of responsiveness to heat and other stresses is diverse. The broad dimensions of variation uncovered are particularly important as they suggest a substantial challenge for functional studies.
Collapse
Affiliation(s)
- Sibo Tian
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Robert A. Haney
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Martin E. Feder
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|