1
|
Yang H, Yamanaka M, Nagao S, Yasuhara K, Shibata N, Higuchi Y, Hirota S. Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140265. [PMID: 31437585 DOI: 10.1016/j.bbapap.2019.140265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Many c-type cytochromes (cyts) can form domain-swapped oligomers. The positively charged Hydrogenobacter thermophilus (HT) cytochrome (cyt) c552 forms domain-swapped oligomers during expression in the Escherichia coli (E. coli) expression system, but the factors influencing the oligomerization remain unrevealed. Here, we found that the dimer of the negatively charged Shewanella violacea (SV) cyt c5 exhibits a domain-swapped structure, in which the N-terminal helix is exchanged between protomers, similar to the structures of the HT cyt c552 and Pseudomonas aeruginosa (PA) cyt c551 domain-swapped dimers. Positively charged horse cyt c and HT cyt c552 domain swapped during expression in E. coli, whereas negatively charged PA cyt c551 and SV cyt c5 did not. Oligomers were formed during expression in E. coli for HT cyt c552 attached to either a co- or post-translational signal peptide for transportation through the cytoplasm membrane, but not for PA cyt c551 attached to either signal peptide. HT cyt c552 formed oligomers in E. coli in the presence and absence of rare codons. More oligomers were obtained from the in vitro folding of horse cyt c and HT cyt c552 by the addition of negatively charged liposomes during folding, whereas the amount of oligomers for the in vitro folding of PA cyt c551 and SV cyt c5 did not change significantly by the addition. These results indicate that the protein surface charge affects the oligomerization of c-type cyts in cells; positively charged c-type cyts assemble on a negatively charged membrane, inducing formation of domain-swapped oligomers during folding.
Collapse
Affiliation(s)
- Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
2
|
Park DJ, Sekhon SS, Yoon J, Kim YH, Min J. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells. Mol Cell Biochem 2016; 413:119-25. [PMID: 26738491 DOI: 10.1007/s11010-015-2645-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Bioprocess Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea
| | - Simranjeet Singh Sekhon
- Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju, 361-763, South Korea
| | - Jihee Yoon
- Division of Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju, 361-763, South Korea.
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea. .,Division of Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea.
| |
Collapse
|
3
|
Volkov AN, Nicholls P, Worrall JA. The complex of cytochrome c and cytochrome c peroxidase: The end of the road? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1482-503. [DOI: 10.1016/j.bbabio.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
|
4
|
Kimata-Ariga Y, Sakakibara Y, Ikegami T, Hase T. Electron transfer of site-specifically cross-linked complexes between ferredoxin and ferredoxin-NADP(+) reductase. Biochemistry 2010; 49:10013-23. [PMID: 20954716 DOI: 10.1021/bi100855a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Laboratory of Regulation of Biological Reactions, Institute for Protein Research,Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
5
|
McGinnity DF, Devreese B, Prazeres S, Van Beeumen J, Moura I, Moura JJ, Pettigrew GW. A single histidine is required for activity of cytochrome c peroxidase from Paracoccus denitrificans. J Biol Chem 1996; 271:11126-33. [PMID: 8626657 DOI: 10.1074/jbc.271.19.11126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The diheme cytochrome c peroxidase from Paracoccus denitrificans was modified with the histidine-specific reagent diethyl pyrocarbonate. At low excess of reagent, 1 mol of histidine was modified in the oxidized enzyme, and modification was associated with loss of the ability to form the active state. With time, the modification reversed, and the ability to form the active state was recovered. The agreement between the spectrophotometric measurement of histidine modification and radioactive incorporation using a radiolabeled reagent indicated little modification of other amino acids. However, the reversal of histidine modification observed spectrophotometrically was not matched by loss of radioactivity, and we propose a slow transfer of the ethoxyformyl group to an unidentified amino acid. The presence of CN- bound to the active peroxidatic site of the enzyme led to complete protection of the essential histidine from modification. Limited subtilisin treatment of the native enzyme followed by tryptic digest of the C-terminal fragment (residues 251-338) showed that radioactivity was located in a peptide containing a single histidine at position 275. We propose that this conserved residue, in a highly conserved region, is central to the function of the active mixed-valence state.
Collapse
Affiliation(s)
- D F McGinnity
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Goodhew CF, Wilson IB, Hunter DJ, Pettigrew GW. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 1990; 271:707-12. [PMID: 2173903 PMCID: PMC1149620 DOI: 10.1042/bj2710707] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The locations of cytochrome c peroxidase and catalase activities in the two Gram-negative bacteria Pseudomonas stutzeri (N.C.I.B. 9721) and Paracoccus denitrificans (N.C.I.B. 8944) were investigated by the production of spheroplasts. In both species the cytochrome c peroxidase was predominantly periplasmic: 92% of total activity in Ps. stutzeri and 98% of nonmembrane-bound activity in Pa. denitrificans were found in this cellular compartment. In contrast, the catalase was mostly in the cytoplasmic fraction. Purification of the Pa. denitrificans cytochrome c peroxidase showed it to be the haem c-containing polypeptide of Mr 42,000 that has already been described by Bosma, Braster, Stouthamer & Van Versefeld [(1987) Eur. J. Biochem. 165, 665-670] but was not identified by them as a peroxidase. The visible-absorption spectra of the enzyme closely resemble those of cytochrome c peroxidase from Pseudomonas aeruginosa but the donor specificity is different, with the Pa. denitrificans enzyme preferring the basic mitochondrial cytochromes c to the acidic cytochromes c-551 and reacting well with the Pa. denitrificans cytochrome c-550.
Collapse
Affiliation(s)
- C F Goodhew
- Department of Preclinical Veterinary Sciences, University of Edinburgh, U.K
| | | | | | | |
Collapse
|
7
|
|
8
|
Chashchin VL, Turko IV, Akhrem AA, Usanov SA. Cross-linking studies of adrenocortical cytochrome P-450scc. Evidence for a covalent complex with adrenodoxin and localization of the adrenodoxin-binding domain. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 828:313-24. [PMID: 3838683 DOI: 10.1016/0167-4838(85)90313-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.
Collapse
|
9
|
Bechtold R, Bosshard HR. Structure of an electron transfer complex. II. Chemical modification of carboxyl groups of cytochrome c peroxidase in presence and absence of cytochrome c. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89198-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Structure of an electron transfer complex. I. Covalent cross-linking of cytochrome c peroxidase and cytochrome c. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89197-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|