1
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
2
|
Napoleon JV, Singh S, Rana S, Bendjennat M, Kumar V, Kizhake S, Palermo NY, Ouellette MM, Huxford T, Natarajan A. Small molecule binding to inhibitor of nuclear factor kappa-B kinase subunit beta in an ATP non-competitive manner. Chem Commun (Camb) 2021; 57:4678-4681. [PMID: 33977973 PMCID: PMC8162871 DOI: 10.1039/d1cc01245b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is a key regulator of the cannonical NF-κB pathway. IKKβ has been validated as a drug target for pathological conditions, which include chronic inflammatory diseases and cancer. Pharmacological studies revealed that chronic administration of ATP-competitive IKKβ inhibitors resulted in unexpected toxicity. We previously reported the discovery of 13-197 as a non-toxic IKKβ inhibitor that reduced tumor growth. Here, we show that 13-197 inhibits IKKβ in a ATP non-competitive manner and an allosteric pocket at the interface of the kinase and ubiquitin like domains was identified as the potential binding site.
Collapse
Affiliation(s)
- John V Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Mourad Bendjennat
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, UNMC, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Nicholas Y Palermo
- Mass Spectrometry and Proteomics Core Facility, UNMC, USA and Computational Chemistry Core Facility, UNMC, USA
| | - Michel M Ouellette
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UNMC, USA and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68022, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA. and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68022, USA and Department of Pharmaceutical Sciences and Department of Genetics, Cell Biology and Anatomy, UNMC, USA
| |
Collapse
|
3
|
Gergs U, Jahn T, Werner F, Köhler C, Köpp F, Großmann C, Neumann J. Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin? PLoS One 2019; 14:e0221289. [PMID: 31425567 PMCID: PMC6699691 DOI: 10.1371/journal.pone.0221289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022] Open
Abstract
The pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Köhler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Tsuchiya Y, Osaki K, Kanamoto M, Nakao Y, Takahashi E, Higuchi T, Kamata H. Distinct B subunits of PP2A regulate the NF-κB signalling pathway through dephosphorylation of IKKβ, IκBα and RelA. FEBS Lett 2017; 591:4083-4094. [PMID: 29139553 PMCID: PMC5767752 DOI: 10.1002/1873-3468.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022]
Abstract
PP2A is composed of a scaffolding subunit (A), a catalytic subunit (C) and a regulatory subunit (B) that is classified into four families including B, B′, B′′ and B′′′/striatin. Here, we found that a distinct PP2A complex regulates NF‐κB signalling by dephosphorylation of IKKβ, IκBα and RelA/p65. The PP2A core enzyme AC dimer and the holoenzyme AB′′′C trimer dephosphorylate IKKβ, IκBα and RelA, whereas the ABC trimer dephosphorylates IκBα but not IKKβ and RelA in cells. In contrast, AB′C and AB′′C trimers have little effect on dephosphorylation of these signalling proteins. These results suggest that different forms of PP2A regulate NF‐κB pathway signalling through multiple steps each in a different manner, thereby finely tuning NF‐κB‐ and IKKβ‐mediated cellular responses.
Collapse
Affiliation(s)
- Yoshihiro Tsuchiya
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Keiko Osaki
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Mayu Kanamoto
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Yuki Nakao
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Ena Takahashi
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Toru Higuchi
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Hideaki Kamata
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| |
Collapse
|
5
|
Nguyen DN, Jiang P, Jacobsen S, Sangild PT, Bendixen E, Chatterton DEW. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses. PLoS One 2015; 10:e0117608. [PMID: 25668313 PMCID: PMC4323210 DOI: 10.1371/journal.pone.0117608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor (TGF)-β2 is an important anti-inflammatory protein in milk and colostrum. TGF-β2 supplementation appears to reduce gut inflammatory diseases in early life, such as necrotizing enterocolitis (NEC) in young mice. However, the molecular mechanisms by which TGF-β2 protects immature intestinal epithelial cells (IECs) remain to be more clearly elucidated before interventions in infants can be considered. Porcine IECs PsIc1 were treated with TGF-β2 and/or lipopolysaccharide (LPS), and changes in the cellular proteome were subsequently analyzed using two-dimensional gel electrophoresis-MS and LC-MS-based proteomics. TGF-β2 alone induced the differential expression of 13 proteins and the majority of the identified proteins were associated with stress responses, TGF-β and Toll-like receptor 4 signaling cascades. In particular, a series of heat shock proteins had similar differential trends as previously shown in the intestine of NEC-resistant preterm pigs and young mice. Furthermore, LC-MS-based proteomics and Western blot analyses revealed 20 differentially expressed proteins following treatment with TGF-β2 in LPS-challenged IECs. Thirteen of these proteins were associated with stress response pathways, among which five proteins were altered by LPS and restored by TGF-β2, whereas six were differentially expressed only by TGF-β2 in LPS-challenged IECs. Based on previously reported biological functions, these patterns indicate the anti-stress and anti-inflammatory effects of TGF-β2 in IECs. We conclude that TGF-β2 of dietary or endogenous origin may regulate the IEC responses against LPS stimuli, thereby supporting cellular homeostasis and innate immunity in response to bacterial colonization, and the first enteral feeding in early life.
Collapse
Affiliation(s)
- Duc Ninh Nguyen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Pingping Jiang
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Susanne Jacobsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Per T. Sangild
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dereck E. W. Chatterton
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
6
|
Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 2013; 289:4219-32. [PMID: 24371145 DOI: 10.1074/jbc.m113.518514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.
Collapse
Affiliation(s)
- Matthew D Mazalouskas
- From the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | | | | | | | | | | |
Collapse
|
7
|
Bruce DL, Macartney T, Yong W, Shou W, Sapkota GP. Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-β pathway. Cell Signal 2012; 24:1999-2006. [PMID: 22781750 DOI: 10.1016/j.cellsig.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023]
Abstract
Protein phosphatases play a key role in balancing the cellular responses to the transforming growth factor-β (TGFβ) signals. Several protein phosphatases have been attributed roles in the regulation of the TGFβ pathway. Among these, PPM1A is the only phosphatase reported to dephosphorylate SMAD2/3 in the nucleus. However we observed PPM1A exclusively in the cytoplasmic fractions independently of TGFβ treatment in all cells tested. These observations imply that a bona fide nuclear SMAD2/3 phosphatase remains elusive. In this study, we report a role for protein phosphatase 5 (PP5) in the TGFβ pathway. We identified PP5 as an interactor of SMAD2/3. Interestingly, in mouse embryonic fibroblast cells derived from PP5-null mice, TGFβ-induced transcriptional responses were significantly enhanced. Rather surprisingly, this enhancement is due to the increased levels of SMAD3 protein observed in PP5-null MEFs compared to the wild type. No differences in the levels of SMAD3 transcripts were observed between the wild-type and PP5-null MEFs. While PP5 is capable of dephosphorylating SMAD3-tail in overexpression assays, we demonstrate that its activity is essential in controlling SMAD3 protein levels in MEFs. We propose that PP5 regulates the TGFβ pathway in MEFs by regulating the expression of SMAD3 protein levels.
Collapse
Affiliation(s)
- David L Bruce
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
8
|
Skarra DV, Goudreault M, Choi H, Mullin M, Nesvizhskii AI, Gingras AC, Honkanen RE. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 2011; 11:1508-16. [PMID: 21360678 DOI: 10.1002/pmic.201000770] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 11/07/2022]
Abstract
Affinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress-induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress-induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label-free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.
Collapse
Affiliation(s)
- Dana V Skarra
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|