1
|
Guleken Z, Aday A, Bayrak AG, Hindilerden İY, Nalçacı M, Cebulski J, Depciuch J. Relationship between amide ratio assessed by Fourier-transform infrared spectroscopy: A biomarker candidate for polycythemia vera disease. JOURNAL OF BIOPHOTONICS 2024; 17:e202400162. [PMID: 38978265 DOI: 10.1002/jbio.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.
Collapse
Affiliation(s)
- Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey
| | - Aynur Aday
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşe Gül Bayrak
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - İpek Yönal Hindilerden
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Meliha Nalçacı
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Krakow, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Shortill SP, Frier MS, Davey M, Conibear E. N-terminal signals in the SNX-BAR paralogs Vps5 and Vin1 guide endosomal coat complex formation. Mol Biol Cell 2024; 35:ar76. [PMID: 38598303 PMCID: PMC11238075 DOI: 10.1091/mbc.e24-01-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Endosomal coats incorporate membrane-binding subunits such as sorting nexin (SNX) proteins. The Saccharomyces cerevisiae SNX-BAR paralogs Vin1 and Vps5 are respective subunits of the endosomal VINE and retromer complexes whose dimerizing BAR domains are required for complex assembly and membrane association. However, a degree of promiscuity is predicted for yeast BAR-BAR pairings, and recent work has implicated the unstructured N-terminal domains of Vin1 and Vps5 in coat formation. Here, we map N-terminal signals in both SNX-BAR paralogs that contribute to the assembly and function of two distinct endosomal coats in vivo. Whereas Vin1 leverages a polybasic region and adjacent hydrophobic motif to bind Vrl1 and form VINE, the N-terminus of Vps5 interacts with the retromer subunit Vps29 at two sites, including a conserved hydrophobic pocket in Vps29 that engages other accessory proteins in humans. We also examined the sole isoform of Vps5 from the milk yeast Kluyveromyces lactis and found that ancestral yeasts may have used a nested N-terminal signal to form both VINE and retromer. Our results suggest that the specific assembly of Vps5-family SNX-BAR coats depends on inputs from unique N-terminal sequence features in addition to BAR domain coupling, expanding our understanding of endosomal coat biology.
Collapse
Affiliation(s)
- Shawn P. Shortill
- Department of Medical Genetics, University of British Columbia, Vancouver, BC VH6 3N1, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mia S. Frier
- Department of Medical Genetics, University of British Columbia, Vancouver, BC VH6 3N1, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, BC VH6 3N1, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
3
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
4
|
Jhaveri A, Maisuria D, Varga M, Mohammadyani D, Johnson ME. Thermodynamics and Free Energy Landscape of BAR-Domain Dimerization from Molecular Simulations. J Phys Chem B 2021; 125:3739-3751. [PMID: 33826319 DOI: 10.1021/acs.jpcb.0c10992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins with BAR domains function to bind to and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. These domains can dimerize in solution or after localizing to the membrane surface. Here, we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using molecular dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. With this methodology, our simulations can simultaneously characterize the structures and relative stabilities of a range of sampled dimers, portraying a heterogeneous and extraordinarily stable bound ensemble, where the proper crystal structure dimer is the most stable in a 100 mM NaCl solution. Nonspecific dimers that are sampled involve contacts that are consistent with experimental structures of higher-order oligomers formed by the LSP1 BAR domain. Because the BAR dimers and oligomers can assemble on membranes, we characterize the relative alignment of the known membrane binding patches, finding that only the specific dimer is aligned to form strong interactions with the membrane. Hence, we would predict a strong selection of the specific dimer in binding to or assembling when on the membrane. Establishing the pairwise stabilities of homodimer contacts is difficult experimentally when the proteins form stable oligomers, but through the method used here, we can isolate these contacts, providing a foundation to study the same interactions on the membrane.
Collapse
Affiliation(s)
- Adip Jhaveri
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Dhruw Maisuria
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Matthew Varga
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Dariush Mohammadyani
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Antón Z, Betin VMS, Simonetti B, Traer CJ, Attar N, Cullen PJ, Lane JD. A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly. J Cell Sci 2020; 133:jcs246306. [PMID: 32513819 PMCID: PMC7375690 DOI: 10.1242/jcs.246306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.
Collapse
Affiliation(s)
- Zuriñe Antón
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Virginie M S Betin
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Boris Simonetti
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Colin J Traer
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Naomi Attar
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
6
|
Hicks L, Liu G, Ukken FP, Lu S, Bollinger KE, O'Connor-Giles K, Gonsalvez GB. Depletion or over-expression of Sh3px1 results in dramatic changes in cell morphology. Biol Open 2015; 4:1448-61. [PMID: 26459243 PMCID: PMC4728355 DOI: 10.1242/bio.013755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian Sorting Nexin 9 (Snx9) family consists of three paralogs: Snx9, Snx18 and Snx33. Most of the published literature to date has centered on the role of Snx9 in clathrin-mediated endocytosis (CME). Snx9 contains an Sh3 domain at its N-terminus and has been shown to interact with Dynamin and actin nucleation factors via this domain. In addition to the Sh3 domain, Snx9 also contains a C-terminal BAR domain. BAR domains are known to sense and/or induce membrane curvature. In addition to endocytosis, recent studies have implicated the Snx9 family in diverse processes such as autophagy, macropinocytosis, phagocytosis and mitosis. The Snx9 family is encoded by a single gene in Drosophila called sh3px1. In this report, we present our initial characterization of sh3px1. We found that depletion of Sh3px1 from Drosophila Schneider 2 (S2) cells resulted in defective lamellipodia formation. A similar phenotype has been reported upon depletion of Scar, the actin nucleation factor implicated in forming lamellipodia. In addition, we demonstrate that over-expression of Sh3px1 in S2 cells results in the formation of tubules as well as long protrusions. Formation of these structures required the C-terminal BAR domain as well as the adjacent Phox homology (PX) domain of Sh3px1. Furthermore, efficient protrusion formation by Sh3px1 required the actin nucleation factor Wasp. Tubules and protrusions were also generated upon over-expressing the mammalian orthologs Snx18 and Snx33 in S2 cells. By contrast, over-expressing Snx9 mostly induced long tubules. Summary: Proteins containing BAR domains are known to generate membrane curvature. Some BAR domains generate tubules upon over-expression in cells, whereas others generate membrane protrusions. We demonstrate that Sh3px1, the Drosophila ortholog of the Snx9 family, is capable of inducing both tubules and protrusions.
Collapse
Affiliation(s)
- Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Guojun Liu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Fiona P Ukken
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sumin Lu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kathryn E Bollinger
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate O'Connor-Giles
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Verschueren E, Spiess M, Gkourtsa A, Avula T, Landgraf C, Mancilla VT, Huber A, Volkmer R, Winsor B, Serrano L, Hochstenbach F, Distel B. Evolution of the SH3 Domain Specificity Landscape in Yeasts. PLoS One 2015; 10:e0129229. [PMID: 26068101 PMCID: PMC4466140 DOI: 10.1371/journal.pone.0129229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.
Collapse
Affiliation(s)
- Erik Verschueren
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Matthias Spiess
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Tapia Mancilla
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aline Huber
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Winsor
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Identification and characterization of Rvs162/Rvs167-3, a novel N-BAR heterodimer in the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2014; 14:182-93. [PMID: 25548150 DOI: 10.1128/ec.00282-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861). We show that Rvs167-3 specifically interacts with Rvs162 to form a stable BAR heterodimer able to bind liposomes in vitro. A second, distinct heterodimer is formed by the canonical BAR proteins Rvs161 and Rvs167. Purified Rvs161/Rvs167 complex also binds liposomes, indicating that C. albicans expresses two functional BAR heterodimers. We used live-cell imaging to localize green fluorescent protein (GFP)-tagged Rvs167-3 and Rvs167 and show that both proteins concentrate in small cortical spots. However, while Rvs167 strictly colocalizes with the endocytic marker protein Abp1, we do not observe any colocalization of Rvs167-3 with sites of endocytosis marked by Abp1. Furthermore, the rvs167-3Δ/Δ mutant is not defective in endocytosis and strains lacking Rvs167-3 or its partner Rvs162 do not display increased sensitivity to high salt concentrations or decreased cell wall integrity, phenotypes which have been observed for rvs167Δ/Δ and rvs161Δ/Δ strains and which are linked to endocytosis defects. Taken together, our results indicate different roles for the two BAR heterodimers in C. albicans: the canonical Rvs161/Rvs167 heterodimer functions in endocytosis, whereas the novel Rvs162/Rvs167-3 heterodimer seems not to be involved in this process. Nevertheless, despite their different roles, our phenotypic analysis revealed a genetic interaction between the two BAR heterodimers, suggesting that they may have related but distinct membrane-associated functions.
Collapse
|
9
|
Sierecki E, Stevers LM, Giles N, Polinkovsky ME, Moustaqil M, Mureev S, Johnston WA, Dahmer-Heath M, Skalamera D, Gonda TJ, Gabrielli B, Collins BM, Alexandrov K, Gambin Y. Rapid mapping of interactions between Human SNX-BAR proteins measured in vitro by AlphaScreen and single-molecule spectroscopy. Mol Cell Proteomics 2014; 13:2233-45. [PMID: 24866125 DOI: 10.1074/mcp.m113.037275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins. We have applied this approach to the family of BAR domain-containing sorting nexin (SNX-BAR) proteins, which are essential regulators of membrane trafficking and remodeling in all eukaryotes. Dimerization of BAR domains is essential for creating a concave structure capable of sensing and inducing membrane curvature. We have systematically mapped 144 pairwise interactions between the human SNX-BAR proteins and generated an interaction matrix of preferred dimerization partners for each family member. We find that while nine SNX-BAR proteins are able to form homo-dimers, several including the retromer-associated SNX1, SNX2, and SNX5 require heteromeric interactions for dimerization. SNX2, SNX4, SNX6, and SNX8 show a promiscuous ability to bind other SNX-BAR proteins and we also observe a novel interaction with the SNX3 protein which lacks the BAR domain structure.
Collapse
Affiliation(s)
- Emma Sierecki
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Loes M Stevers
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Nichole Giles
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Mark E Polinkovsky
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Mehdi Moustaqil
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Sergey Mureev
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Wayne A Johnston
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Mareike Dahmer-Heath
- §University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Dubravka Skalamera
- §University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Thomas J Gonda
- ¶School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Brian Gabrielli
- §University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Brett M Collins
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Kirill Alexandrov
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia;
| | - Yann Gambin
- From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
10
|
van Weering JRT, Cullen PJ. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 2014; 31:40-7. [PMID: 24641888 DOI: 10.1016/j.semcdb.2014.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 01/27/2023]
Abstract
The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These tubules are formed and stabilized through the scaffolding properties of cytosolic Bin/Amphiphysin/Rvs (BAR) proteins that comprise phosphoinositide-detecting moieties, recruiting these proteins to specific endosomal membrane areas. These include the protein family of sorting nexins that remodel endosome membrane into tubules by an evolutionary conserved mechanism of dimerization, local membrane curvature detection/induction and oligomerization. How the formation of such a tubular membrane carrier is coordinated with cargo capture is largely unknown. The tubular structure of the membrane carriers could sequester membrane-bound cargo through an iterative mechanism of geometric sorting. Furthermore, the recent identification of cargo adaptors for the endosome protein sorting complex retromer has expanded the sorting signals that retrieve specific sets of cargo away from lysosomal degradation through distinct membrane trafficking pathways.
Collapse
Affiliation(s)
- Jan R T van Weering
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
11
|
Sorting nexin 9 recruits clathrin heavy chain to the mitotic spindle for chromosome alignment and segregation. PLoS One 2013; 8:e68387. [PMID: 23861900 PMCID: PMC3702553 DOI: 10.1371/journal.pone.0068387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/02/2013] [Indexed: 12/22/2022] Open
Abstract
Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association.
Collapse
|
12
|
Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J 2012; 31:4466-80. [PMID: 23085988 PMCID: PMC3512392 DOI: 10.1038/emboj.2012.283] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/25/2012] [Indexed: 12/23/2022] Open
Abstract
A systematic analysis of the dimerization, membrane remodelling and higher order assembly properties of all 12 human SNX-BAR sorting nexins reveals how different SNX-BAR combinations allow the formation of distinct tubular subdomains from the same endosomal vacuole during cargo sorting. Sorting nexins (SNXs) are regulators of endosomal sorting. For the SNX-BAR subgroup, a Bin/Amphiphysin/Rvs (BAR) domain is vital for formation/stabilization of tubular subdomains that mediate cargo recycling. Here, by analysing the in vitro membrane remodelling properties of all 12 human SNX-BARs, we report that some, but not all, can elicit the formation of tubules with diameters that resemble sorting tubules observed in cells. We reveal that SNX-BARs display a restricted pattern of BAR domain-mediated dimerization, and by resolving a 2.8 Å structure of a SNX1-BAR domain homodimer, establish that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective ‘tip–loop' interactions. Overall, the restricted and selective nature of these interactions provide a molecular explanation for how distinct SNX-BAR-decorated tubules are nucleated from the same endosomal vacuole, as observed in living cells. Our data provide insight into the molecular mechanism that generates and organizes the tubular endosomal network.
Collapse
|
13
|
Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 2012; 37:526-33. [PMID: 23058040 DOI: 10.1016/j.tibs.2012.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/26/2023]
Abstract
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.
Collapse
|
14
|
Ma MPC, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci 2012; 125:4372-82. [PMID: 22718350 DOI: 10.1242/jcs.105981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 and SNX33 - are required for progression and completion of mitosis. Depletion of any one of these proteins using siRNA induces multinucleation, an indicator of cytokinesis failure, as well as an accumulation of cytokinetic cells. Time-lapse microscopy on siRNA-treated cells revealed a role for SNX9 subfamily members in progression through the ingression and abscission stages of cytokinesis. Depletion of these three proteins disrupted MRLC(S19) localization during ingression and recruitment of Rab11-positive recycling endosomes to the intracellular bridge between nascent daughter cells. SNX9 depletion also disrupted the localization of Golgi during cytokinesis. Endocytosis of transferrin was blocked during cytokinesis by depletion of the SNX9 subfamily members, suggesting that these proteins participate in cytokinesis in an endocytosis-dependent manner. In contrast, depletion of SNX9 did not block transferrin uptake during metaphase but did delay chromosome alignment and segregation, suggesting that SNX9 plays an additional non-endocytic role at early mitotic stages. We conclude that SNX9 subfamily members are required for mitosis through both endocytosis-dependent and -independent processes.
Collapse
Affiliation(s)
- Maggie P C Ma
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | |
Collapse
|
15
|
Abstract
From the pioneering work of Mabel and Lowell Hokin in the 1950s, the biology of this specific isomer of hexahydroxycyclohexane and its phosphorylated derivatives, in the form of inositol phosphates and phosphoinositides, has expanded to fill virtually every corner of cell biology, whole-organism physiology and development. In the present paper, I give a personal view of the role played by phosphoinositides in regulating the function of the endosomal network, and, in so doing, highlight some of the basic properties through which phosphoinositides regulate cell function.
Collapse
|
16
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|