1
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Suleiman S, Vasileva-Slaveva M, Yordanov A, Pentimalli F, Giordano A, Calleja-Agius J. The Role of FBXW7 in Gynecologic Malignancies. Cells 2023; 12:1415. [PMID: 37408248 DOI: 10.3390/cells12101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | | | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Suleiman
- Whipps Cross Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, UK
| | - Mariela Vasileva-Slaveva
- Department of Breast Surgery, "Dr. Shterev" Hospital, 1330 Sofia, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
- Bulgarian Breast and Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", 70010 Casamassima, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
4
|
Jiménez-Izquierdo R, Morrugares R, Suanes-Cobos L, Correa-Sáez A, Garrido-Rodríguez M, Cerero-Tejero L, Khan OM, de la Luna S, Sancho R, Calzado MA. FBXW7 tumor suppressor regulation by dualspecificity tyrosine-regulated kinase 2. Cell Death Dis 2023; 14:202. [PMID: 36934104 PMCID: PMC10024693 DOI: 10.1038/s41419-023-05724-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
FBXW7 is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a main tumor suppressor due to its ability to control proteasome-mediated degradation of several oncoproteins such as c-Jun, c-Myc, Cyclin E1, mTOR, and Notch1-IC. FBXW7 inactivation in human cancers results from a somatic mutation or downregulation of its protein levels. This work describes a novel regulatory mechanism for FBXW7 dependent on the serine/threonine protein kinase DYRK2. We show that DYRK2 interacts with and phosphorylates FBXW7 resulting in its proteasome-mediated degradation. DYRK2-dependent FBXW7 destabilization is independent of its ubiquitin ligase activity. The functional analysis demonstrates the existence of DYRK2-dependent regulatory mechanisms for key FBXW7 substrates. Finally, we provide evidence indicating that DYRK2-dependent regulation of FBXW7 protein accumulation contributes to cytotoxic effects in response to chemotherapy agents such as Doxorubicin or Paclitaxel in colorectal cancer cell lines and to BET inhibitors in T-cell acute lymphoblastic leukemia cell lines. Altogether, this work reveals a new regulatory axis, DYRK2/FBXW7, which provides an understanding of the role of these two proteins in tumor progression and DNA damage responses.
Collapse
Affiliation(s)
- Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lucía Suanes-Cobos
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Cerero-Tejero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Omar M Khan
- Hamad Bin Khalifa University, College of Health and Life Sciences Qatar Foundation, Education City, Doha, Qatar
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Rocío Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE10 9RT, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
5
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
6
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Kim YJ, Kim Y, Kumar A, Kim CW, Toth Z, Cho NH, Lee HR. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7. PLoS Pathog 2021; 17:e1009179. [PMID: 33471866 PMCID: PMC7816990 DOI: 10.1371/journal.ppat.1009179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi’s sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis. Primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma, is associated with Kaposi’s sarcoma-associated herpesvirus (KSHV). However, the underlying mechanisms that govern the aggressiveness of KSHV-associated PEL are poorly understood. Here, we demonstrate that KSHV LANA interacts with cellular ubiquitin E3 ligase FBW7, sequestering MCL-1 from FBW7, which reduces MCL-1 ubiquitination. As such, LANA potently stabilizes and increases MCL-1 protein, leading to inhibition of caspase-3-mediated apoptosis in PEL cells. Furthermore, MCL-1 inhibitors efficiently blocked PEL progression in mouse xenograft model. These results suggest that LANA acts as a proto-oncogene via deregulating tumor suppressor FBW7, which upregulates anti-apoptotic MCL-1 expression. This study suggests drugs that target MCL-1 may serve as an effective therapy against KSHV+ PEL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Apoptosis
- Cell Proliferation
- F-Box-WD Repeat-Containing Protein 7/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- Female
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/virology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeong Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
| | - Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Chan Woo Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Nam Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University college of Medicine, Seoul, South Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
9
|
Mishra M, Thacker G, Sharma A, Singh AK, Upadhyay V, Sanyal S, Verma SP, Tripathi AK, Bhatt MLB, Trivedi AK. FBW7 Inhibits Myeloid Differentiation in Acute Myeloid Leukemia via GSK3-Dependent Ubiquitination of PU.1. Mol Cancer Res 2020; 19:261-273. [PMID: 33188146 DOI: 10.1158/1541-7786.mcr-20-0268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β), an ubiquitously expressed serine/threonine kinase is reported to be overexpressed and hyperactivated in cancers including acute myeloid leukemia (AML) where it promotes self-renewal, growth, and survival of AML cells. Therefore, GSK3β inhibition results in AML cell growth inhibition and myeloid differentiation. Here we identified master transcription factor PU.1 of monocyte-macrophage differentiation pathway as potential GSK3β target. We demonstrate that GSK3β phosphorylates PU.1 at Ser41 and Ser140 leading to its recognition and subsequent ubiquitin-mediated degradation by E3 ubiquitin ligase FBW7. This GSK3-dependent degradation of PU.1 by FBW7 inhibited monocyte-macrophage differentiation. We further showed that a phospho-deficient PU.1 mutant (PU.1-S41, S140A) neither bound to FBW7 nor was degraded by it. Consequently, PU.1-S41, S140A retained its transactivation, DNA-binding ability and promoted monocyte-macrophage differentiation of U937 cells even without phorbol 12-myristate 13-acetate (PMA) treatment. We further showed that FBW7 overexpression inhibited both PMA as well as M-CSF-induced macrophage differentiation of myeloid cell lines and peripheral blood mononuclear cells (PBMC) from healthy volunteers, respectively. Contrarily, FBW7 depletion promoted differentiation of these cells even without any inducer suggesting for a robust role of GSK3β-FBW7 axis in negatively regulating myeloid differentiation. Furthermore, we also recapitulated these findings in PBMCs isolated from patients with leukemia where FBW7 overexpression markedly inhibited endogenous PU.1 protein levels. In addition, PBMCs also showed enhanced differentiation when treated with M-CSF and GSK3 inhibitor (SB216763) together compared with M-CSF treatment alone. IMPLICATIONS: Our data demonstrate a plausible mechanism behind PU.1 restoration and induction of myeloid differentiation upon GSK3β inhibition and further substantiates potential of GSK3β as a therapeutic target in AML.
Collapse
Affiliation(s)
- Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | | | - Anil Kumar Tripathi
- King George's Medical University, Lucknow, UP, India.,Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), UP, Lucknow, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
10
|
Zhang Z, Hu Q, Xu W, Liu W, Liu M, Sun Q, Ye Z, Fan G, Qin Y, Xu X, Yu X, Ji S. Function and regulation of F-box/WD repeat-containing protein 7. Oncol Lett 2020; 20:1526-1534. [PMID: 32724394 PMCID: PMC7377190 DOI: 10.3892/ol.2020.11728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin-proteasome system is an important post-translational modification system involved in numerous biological processes, such as cell cycle regulation, gene transcription, signal transduction, apoptosis, differentiation and development. F-box/WD repeat-containing protein 7 (FBXW7) is one of the most studied F-box (FBX) proteins, serving as substrate recognition component of S phase kinase-associated protein 1-Cullin 1-FBX protein complexes. As a tumor suppressor, FBXW7 recognizes numerous proto-oncoproteins and promotes their ubiquitination and subsequent proteasomal degradation. FBXW7 is regulated at different levels, leading to tunable and specific control of the activity and abundance of its substrates. Therefore, genetic mutations or decreases in its expression serve an important biological role in tumor development. In-depth studies and identification of additional substrates targeted by FBXW7 have suggested a signaling network regulated by FBXW7, including its tumor-inhibitory role. The present review focused on the role of FBXW7 in tumor suppression and its application in cancer therapy.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Wang JY, Zhu B, Patterson LL, Rogan MR, Kibler CE, McBride JW. Ehrlichia chaffeensis TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection. PLoS Pathog 2020; 16:e1008541. [PMID: 32353058 PMCID: PMC7217479 DOI: 10.1371/journal.ppat.1008541] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/12/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) exploits evolutionarily conserved Notch and Wnt host cell signaling pathways to downregulate innate immune host defenses and promote infection. The multifunctional E. chaffeensis TRP120 effector which has HECT E3 ubiquitin ligase activity, interacts with the host nuclear tumor suppressor F-BOX and WD domain repeating-containing 7 (FBW7). FBW7 is the substrate recognition subunit of the Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex (SCF) known to negatively regulate a network of oncoproteins (Notch, cyclin E, c-Jun, MCL1 and cMYC). In this study, we demonstrate that TRP120 and FBW7 colocalize strongly in the nucleus by confocal immunofluorescent microscopy and interactions between TRP120 and FBW7 FBOX and WD40 domains were demonstrated by ectopic expression and co-immunoprecipitation. Although FBW7 gene expression increased during E. chaffeensis infection, FBW7 levels significantly decreased (>70%) by 72 h post infection. Moreover, an iRNA knockdown of FBW7 coincided with increased E. chaffeensis infection and levels of Notch intracellular domain (NICD), phosphorylated c-Jun, MCL-1 and cMYC, which are negatively regulated by FBW7. An increase in FBW7 K48 ubiquitination was detected during infection by co-IP, and FBW7 degradation was inhibited in infected cells treated with the proteasomal inhibitor bortezomib. Direct TRP120 ubiquitination of native and recombinant FBW7 was demonstrated in vitro and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. This study identifies the tumor suppressor, FBW7, as a TRP120 HECT E3 Ub ligase substrate, and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading FBW7 to maintain stability of Notch and other oncoproteins involved in cell survival and apoptosis.
Collapse
Affiliation(s)
- Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clayton E. Kibler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A 2018; 115:E8996-E9005. [PMID: 30181290 DOI: 10.1073/pnas.1804379115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high-fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high-fat diet-induced hepatic insulin resistance. Here, we employed a systems-level approach to uncover additional signaling pathways involved in high-fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high-fat-fed, and high-fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation. This was followed by a functional siRNA-based screen to determine which dynamically regulated phosphoproteins may be involved in canonical insulin signaling. Direct PKCε substrates were identified by motif analysis of phosphoproteomics data and validated using a large-scale in vitro kinase assay. These substrates included the p70S6K substrates RPS6 and IRS1, which suggested cross talk between PKCε and p70S6K in high-fat diet-induced hepatic insulin resistance. These results identify an expanded set of proteins through which PKCε may drive high-fat diet-induced hepatic insulin resistance that may direct new therapeutic approaches for T2D.
Collapse
|
14
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Physiological functions of FBW7 in cancer and metabolism. Cell Signal 2018; 46:15-22. [PMID: 29474981 DOI: 10.1016/j.cellsig.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/11/2022]
Abstract
FBW7 is one of the most well characterized F-box proteins that serve as substrate recognition subunits of SCF (Skp1-Cullin 1-F-box proteins) E3 ubiquitin ligase complexes. SCFFBW7 plays key roles in regulating cell cycle progression, differentiation, and stem cell maintenance largely through targeting a broad range of oncogenic substrates for proteasome-dependent degradation. The identification of an increasing number of FBW7 substrates for ubiquitination, and intensive in vitro and in vivo studies have revealed a network of signaling components controlled by FBW7 that contributes to metabolic regulation as well as its tumor suppressor role. Here we mainly focus on recent findings that highlight a critical role for FBW7 in cancer and metabolism.
Collapse
|
16
|
Zitouni S, Méchali F, Papin C, Choquet A, Roche D, Baldin V, Coux O, Bonne-Andrea C. The stability of Fbw7α in M-phase requires its phosphorylation by PKC. PLoS One 2017; 12:e0183500. [PMID: 28850619 PMCID: PMC5574586 DOI: 10.1371/journal.pone.0183500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022] Open
Abstract
Fbw7 is a tumor suppressor often deleted or mutated in human cancers. It serves as the substrate-recruiting subunit of a SCF ubiquitin ligase that targets numerous critical proteins for degradation, including oncoproteins and master transcription factors. Cyclin E was the first identified substrate of the SCFFbw7 ubiquitin ligase. In human cancers bearing FBXW7-gene mutations, deregulation of cyclin E turnover leads to its aberrant expression in mitosis. We investigated Fbw7 regulation in Xenopus eggs, which, although arrested in a mitotic-like phase, naturally express high levels of cyclin E. Here, we report that Fbw7α, the only Fbw7 isoform detected in eggs, is phosphorylated by PKC (protein kinase C) at a key residue (S18) in a manner coincident with Fbw7α inactivation. We show that this PKC-dependent phosphorylation and inactivation of Fbw7α also occurs in mitosis during human somatic cell cycles, and importantly is critical for Fbw7α stabilization itself upon nuclear envelope breakdown. Finally, we provide evidence that S18 phosphorylation, which lies within the intrinsically disordered N-terminal region specific to the α-isoform reduces the capacity of Fbw7α to dimerize and to bind cyclin E. Together, these findings implicate PKC in an evolutionarily-conserved pathway that aims to protect Fbw7α from degradation by keeping it transiently in a resting, inactive state.
Collapse
Affiliation(s)
- Sihem Zitouni
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Francisca Méchali
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Papin
- Institut de Génétique Humaine, CNRS, UMR 9002, Université de Montpellier, Montpellier, France
| | - Armelle Choquet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France
| | - Daniel Roche
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- Institut de Biologie Computationnelle, LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
17
|
Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C, Farhan H. The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. EMBO J 2016; 36:260-273. [PMID: 28007894 DOI: 10.15252/embj.201694795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
The F-box protein FBXW7 is the substrate-recruiting subunit of an SCF ubiquitin ligase and a major tumor-suppressor protein that is altered in several human malignancies. Loss of function of FBXW7 results in the stabilization of numerous proteins that orchestrate cell proliferation and survival. Little is known about proteins that directly regulate the function of this protein. In the current work, we have mapped the interactome of the enigmatic pseudophosphatase STYX We reasoned that a catalytically inactive phosphatase might have adopted novel mechanisms of action. The STYX interactome contained several F-box proteins, including FBXW7. We show that STYX binds to the F-box domain of FBXW7 and disables its recruitment into the SCF complex. Therefore, STYX acts as a direct inhibitor of FBXW7, affecting the cellular levels of its substrates. Furthermore, we find that levels of STYX and FBXW7 are anti-correlated in breast cancer patients, which affects disease prognosis. We propose the STYX-FBXW7 interaction as a promising drug target for future investigations.
Collapse
Affiliation(s)
- Veronika Reiterer
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland
| | | | - Francois Le Guerroue
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany
| | - Stefano Confalonieri
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Manuela Vecchi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany .,Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway .,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Attiyeh EF, Maris JM, Lock R, Reynolds CP, Kang MH, Carol H, Gorlick R, Kolb EA, Keir ST, Wu J, Landesman Y, Shacham S, Lyalin D, Kurmasheva RT, Houghton PJ, Smith MA. Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPT-330): A report from the pediatric preclinical testing program. Pediatr Blood Cancer 2016; 63:276-86. [PMID: 26398108 PMCID: PMC4722540 DOI: 10.1002/pbc.25727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/06/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Selinexor (KPT-330) is an inhibitor of the major nuclear export receptor, exportin 1 (XPO1, also termed chromosome region maintenance 1, CRM1) that has demonstrated activity in preclinical models and clinical activity against several solid and hematological cancers. PROCEDURES Selinexor was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations from 1.0 nM to 10 μM and against the PPTP in vivo xenograft panels administered orally at a dose of 10 mg/kg thrice weekly for 4 weeks. RESULTS Selinexor demonstrated cytotoxic activity in vitro, with a median relative IC50 value of 123 nM (range 13.0 nM to >10 μM). Selinexor induced significant differences in event-free survival (EFS) distribution in 29 of 38 (76%) of the evaluable solid tumor xenografts and in five of eight (63%) of the evaluable ALL xenografts. Objective responses (partial or complete responses, PR/CR) were observed for 4 of 38 solid tumor xenografts including Wilms tumor, medulloblastoma (n = 2), and ependymoma models. For the ALL panel, two of eight (25%) xenografts achieved either CR or maintained CR. Two responding xenografts had FBXW7 mutations at R465 and two had SMARCA4 mutations. Selinexor induced p53, p21, and cleaved PARP in several solid tumor models. CONCLUSIONS Selinexor induced regression against several solid tumor and ALL xenografts and slowed tumor growth in a larger number of models. Pharmacodynamic effects for XPO1 inhibition were noted. Defining the relationship between selinexor systemic exposures in mice and humans will be important in assessing the clinical relevance of these results.
Collapse
Affiliation(s)
- Edward F. Attiyeh
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | - Richard Lock
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - Hernan Carol
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | | | | | - Jianrong Wu
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol 2015; 36:62-70. [PMID: 26459133 DOI: 10.1016/j.semcancer.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.
Collapse
Affiliation(s)
- Wenshan Xu
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany.
| |
Collapse
|
20
|
Schülein-Völk C, Wolf E, Zhu J, Xu W, Taranets L, Hellmann A, Jänicke LA, Diefenbacher ME, Behrens A, Eilers M, Popov N. Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep 2014; 9:1099-109. [PMID: 25437563 DOI: 10.1016/j.celrep.2014.09.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/11/2014] [Accepted: 09/28/2014] [Indexed: 01/06/2023] Open
Abstract
Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28.
Collapse
Affiliation(s)
- Christina Schülein-Völk
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jing Zhu
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Wenshan Xu
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Andreas Hellmann
- Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Laura A Jänicke
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus E Diefenbacher
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken and Department of Radiation Oncology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany.
| |
Collapse
|
21
|
Abstract
Fbw7 is a member of F-box family proteins, which constitute one subunit of Skp1, Cul1, and F-box protein (SCF) ubiquitin ligase complex. SCF(Fbw7) targets a set of well-known oncoproteins, including c-Myc, cyclin E, Notch, c-Jun, and Mcl-1, for ubiquitylation and degradation. Fbw7 provides specificity of the ubiquitylation of these substrate proteins via recognition of a consensus phosphorylated degron. Through regulation of several important proteins, Fbw7 controls diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and neural cell stemness. As reduced Fbw7 expression level and loss-of-function mutations are found in a wide range of human cancers, Fbw7 is generally considered as a tumor suppressor. However, the exact mechanisms underlying Fbw7-induced tumor suppression is unclear. This review focuses on regulation network, biological functions, and genetic alteration of Fbw7 in connection with its role in cancer development.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | | |
Collapse
|
22
|
Schülein C, Eilers M, Popov N. PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Lett 2011; 585:2151-7. [DOI: 10.1016/j.febslet.2011.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 12/29/2022]
|