1
|
Kumarasinghe L, Garcia-Gimeno MA, Ramirez J, Mayor U, Zugaza JL, Sanz P. P-Rex1 is a novel substrate of the E3 ubiquitin ligase Malin associated with Lafora disease. Neurobiol Dis 2023; 177:105998. [PMID: 36638890 PMCID: PMC10682699 DOI: 10.1016/j.nbd.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Laforin and Malin are two proteins that are encoded by the genes EPM2A and EPM2B, respectively. Laforin is a glucan phosphatase and Malin is an E3-ubiquitin ligase, and these two proteins function as a complex. Mutations occurring at the level of one of the two genes lead to the accumulation of an aberrant form of glycogen meant to cluster in polyglucosans that go under the name of Lafora bodies. Individuals affected by the appearance of these polyglucosans, especially at the cerebral level, experience progressive neurodegeneration and several episodes of epilepsy leading to the manifestation of a fatal form of a rare disease called Lafora disease (LD), for which, to date, no treatment is available. Despite the different dysfunctions described for this disease, many molecular aspects still demand elucidation. An effective way to unknot some of the nodes that prevent the achievement of better knowledge of LD is to focus on the substrates that are ubiquitinated by the E3-ubiquitin ligase Malin. Some substrates have already been provided by previous studies based on protein-protein interaction techniques and have been associated with some alterations that mark the disease. In this work, we have used an unbiased alternative approach based on the activity of Malin as an E3-ubiquitin ligase. We report the discovery of novel bonafide substrates of Malin and have characterized one of them more deeply, namely PIP3-dependent Rac exchanger 1 (P-Rex1). The analysis conducted upon this substrate sets the genesis of the delineation of a molecular pathway that leads to altered glucose uptake, which could be one of the origin of the accumulation of the polyglucosans present in the disease.
Collapse
Affiliation(s)
- L Kumarasinghe
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - M A Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de València, 46022, Valencia, Spain
| | - J Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - U Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain
| | - J L Zugaza
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain; Achucarro Basque Center for Neuroscience, Scientific Park UPV/EHU, 48940 Leioa, Bizkaia, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - P Sanz
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Burgos DF, Machío-Castello M, Iglesias-Cabeza N, Giráldez BG, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease. Neurotherapeutics 2023; 20:230-244. [PMID: 36303102 PMCID: PMC10119355 DOI: 10.1007/s13311-022-01304-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, 28029, Madrid, Spain
| | - María Machío-Castello
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz G Giráldez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- Department of Parasitology, School of Pharmacy, Complutense de Madrid University, 28040, Madrid, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
4
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
5
|
Simmons ZR, Sharma S, Wayne J, Li S, Vander Kooi CW, Gentry MS. Generation and characterization of a laforin nanobody inhibitor. Clin Biochem 2021; 93:80-89. [PMID: 33831386 PMCID: PMC8217207 DOI: 10.1016/j.clinbiochem.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Mutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood dementia Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. In this work, we present the generation and characterization of laforin nanobodies, with one being a laforin inhibitor. DESIGN AND METHODS We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Using para-nitrophenyl phosphate (pNPP) and a malachite gold-based assay specific for glucan phosphatase activity, we assess the inhibitory effect of one nanobody on laforin's catalytic activity. RESULTS Six families of laforin nanobodies are characterized and their epitopes mapped. One nanobody is identified and characterized that serves as an inhibitor of laforin's phosphatase activity. CONCLUSIONS The six generated and characterized laforin nanobodies, with one being a laforin inhibitor, are an important set of tools that open new avenues to define unresolved glycogen metabolism questions.
Collapse
Affiliation(s)
- Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jeremiah Wayne
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, United States
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
6
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
7
|
Lafora Disease: A Ubiquitination-Related Pathology. Cells 2018; 7:cells7080087. [PMID: 30050012 PMCID: PMC6116066 DOI: 10.3390/cells7080087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Lafora disease (LD, OMIM254780) is a rare and fatal form of progressive myoclonus epilepsy (PME). Among PMEs, LD is unique because of the rapid neurological deterioration of the patients and the appearance in brain and peripheral tissues of insoluble glycogen-like (polyglucosan) inclusions, named Lafora bodies (LBs). LD is caused by mutations in the EPM2A gene, encoding the dual phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Laforin and malin form a functional complex that is involved in the regulation of glycogen synthesis. Thus, in the absence of a functional complex glycogen accumulates in LBs. In addition, it has been suggested that the laforin-malin complex participates in alternative physiological pathways, such as intracellular protein degradation, oxidative stress, and the endoplasmic reticulum unfolded protein response. In this work we review the possible cellular functions of laforin and malin with a special focus on their role in the ubiquitination of specific substrates. We also discuss here the pathological consequences of defects in laforin or malin functions, as well as the therapeutic strategies that are being explored for LD.
Collapse
|
8
|
Choi JW, Bong SM, Yang SW, Jang H, Park S, Kim SJ, Lee BI. Recombinant Human Laforin Expressed in Insect Cells: Expression, Purification, and Biochemical Characterizations. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.5.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R, Stapleton DI, Gooley PR, Neumann D. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 2015; 290:11715-28. [PMID: 25792737 PMCID: PMC4416872 DOI: 10.1074/jbc.m114.633271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins.
Collapse
Affiliation(s)
- Yvonne Oligschlaeger
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Marie Miglianico
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Roland Scholz
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Ramon F Thali
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Roland Tuerk
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | | | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Dietbert Neumann
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands, the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| |
Collapse
|
10
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
11
|
Brewer MK, Husodo S, Dukhande VV, Johnson MB, Gentry MS. Expression, purification and characterization of soluble red rooster laforin as a fusion protein in Escherichia coli. BMC BIOCHEMISTRY 2014; 15:8. [PMID: 24690255 PMCID: PMC4234410 DOI: 10.1186/1471-2091-15-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 01/20/2023]
Abstract
Background The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. Results In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. Conclusions Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, 741 S, Limestone, Lexington, Kentucky 40536-0509, USA.
| |
Collapse
|
12
|
Exploring the structural insights on human laforin mutation K87A in Lafora disease--a molecular dynamics study. Appl Biochem Biotechnol 2013; 171:874-82. [PMID: 23904258 DOI: 10.1007/s12010-013-0393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.
Collapse
|
13
|
Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329. PLoS One 2013; 8:e69523. [PMID: 23922729 PMCID: PMC3724922 DOI: 10.1371/journal.pone.0069523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780), is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin’s oligomerization.
Collapse
|
14
|
Nitschke F, Wang P, Schmieder P, Girard JM, Awrey DE, Wang T, Israelian J, Zhao X, Turnbull J, Heydenreich M, Kleinpeter E, Steup M, Minassian BA. Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab 2013; 17:756-67. [PMID: 23663739 DOI: 10.1016/j.cmet.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 11/29/2022]
Abstract
Laforin or malin deficiency causes Lafora disease, characterized by altered glycogen metabolism and teenage-onset neurodegeneration with intractable and invariably fatal epilepsy. Plant starches possess small amounts of metabolically essential monophosphate esters. Glycogen contains similar phosphate amounts, which are thought to originate from a glycogen synthase error side reaction and therefore lack any specific function. Glycogen is also believed to lack monophosphates at glucosyl carbon C6, an essential phosphorylation site in plant starch metabolism. We now show that glycogen phosphorylation is not due to a glycogen synthase side reaction, that C6 is a major glycogen phosphorylation site, and that C6 monophosphates predominate near centers of glycogen molecules and positively correlate with glycogen chain lengths. Laforin or malin deficiency causes C6 hyperphosphorylation, which results in malformed long-chained glycogen that accumulates in many tissues, causing neurodegeneration in brain. Our work advances the understanding of Lafora disease pathogenesis and suggests that glycogen phosphorylation has important metabolic function.
Collapse
Affiliation(s)
- Felix Nitschke
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Romá-Mateo C, Sanz P, Gentry MS. Deciphering the role of malin in the lafora progressive myoclonus epilepsy. IUBMB Life 2012; 64:801-8. [PMID: 22815132 DOI: 10.1002/iub.1072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
Lafora disease (LD) is a fatal, autosomal recessive neurodegenerative disorder that results in progressive myoclonus epilepsy. A hallmark of LD is the accumulation of insoluble, aberrant glycogen-like structures called Lafora bodies. LD is caused by mutations in the gene encoding the E3 ubiquitin ligase malin or the glucan phosphatase laforin. Although LD was first described in 1911, its symptoms are still lacking a consistent molecular explanation and, consequently, a cure is far from being achieved. Some data suggest that malin forms a functional complex with laforin. This complex promotes the ubiquitination of proteins involved in glycogen metabolism and misregulation of pathways involved in this process results in Lafora body formation. In addition, recent results obtained from both cell culture and LD mouse models have highlighted a role of the laforin-malin complex in the regulation of endoplasmic reticulum-stress and protein clearance pathways. These results suggest that LD should be considered as a novel member of the group of protein clearance diseases such as Parkinson's, Huntington's, or Alzheimer's, in addition to being a glycogen metabolism disease. Herein, we review the latest results concerning the role of malin in LD and attempt to decipher its function. © 2012 IUBMB IUBMB Life, 64(10): 801-808, 2012.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | | |
Collapse
|
16
|
Gentry MS, Romá-Mateo C, Sanz P. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J 2012; 280:525-37. [PMID: 22364389 DOI: 10.1111/j.1742-4658.2012.08549.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is related to the activity of two proteins, the dual-specificity phosphatase laforin and the E3-ubiquitin ligase malin, which form a functional complex. Laforin is unique in humans, as it is composed of a carbohydrate-binding module attached to a cysteine-based catalytic dual-specificity phosphatase domain. Laforin directly dephosphorylates glycogen, but other proteinaceous substrates, if they exist, have remained elusive. Recently, an emerging set of laforin-binding partners apart from malin have been described, suggestive of laforin roles unrelated to its catalytic activity. Further investigations based on different transgenic mouse models have shown that the laforin-malin complex is also involved in other cellular processes, such as response to endoplasmic reticulum stress and misfolded protein clearance by the lysosomal pathway. However, controversial data and some missing links still make it difficult to assess the concrete relationship between glycogen deregulation and neuronal damage leading to the fatal symptoms observed in LD patients, such as myoclonic seizures and epilepsy. Consequently, clinical treatments are far from being achieved. In the present review, we focus on the knowledge of laforin biology, not only as a glucan phosphatase, but also as an adaptor protein involved in several physiological pathways.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
17
|
Abstract
Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease.
Collapse
|
18
|
The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol Cell Biol 2011; 32:652-63. [PMID: 22124153 DOI: 10.1128/mcb.06353-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.
Collapse
|
19
|
Dukhande VV, Rogers DM, Romá-Mateo C, Donderis J, Marina A, Taylor AO, Sanz P, Gentry MS. Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity. PLoS One 2011; 6:e24040. [PMID: 21887368 PMCID: PMC3162602 DOI: 10.1371/journal.pone.0024040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.
Collapse
Affiliation(s)
- Vikas V. Dukhande
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Devin M. Rogers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Jordi Donderis
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Adam O. Taylor
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail: (PS); (MG)
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (PS); (MG)
| |
Collapse
|