1
|
Wurz AI, Bunner WP, Szatmari EM, Hughes RM. CRY-BARs: Versatile light-gated molecular tools for the remodeling of membrane architectures. J Biol Chem 2022; 298:102388. [PMID: 35987384 PMCID: PMC9530617 DOI: 10.1016/j.jbc.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
BAR (Bin, Amphiphysin and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse-BAR) domain containing tools derived from the fusion of the A. thaliana Cryptochrome 2 photoreceptor and I-BAR protein domains ('CRY-BARs') with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamics changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and PIP2 binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.
Collapse
Affiliation(s)
- Anna I Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Wyatt Paul Bunner
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Erzsebet M Szatmari
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States.
| |
Collapse
|
2
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
3
|
Sarapulov AV, Petrov P, Hernández-Pérez S, Šuštar V, Kuokkanen E, Cords L, Samuel RVM, Vainio M, Fritzsche M, Carrasco YR, Mattila PK. Missing-in-Metastasis/Metastasis Suppressor 1 Regulates B Cell Receptor Signaling, B Cell Metabolic Potential, and T Cell-Independent Immune Responses. Front Immunol 2020; 11:599. [PMID: 32373113 PMCID: PMC7176992 DOI: 10.3389/fimmu.2020.00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Efficient generation of antibodies by B cells is one of the prerequisites of protective immunity. B cell activation by cognate antigens via B cell receptors (BCRs), or pathogen-associated molecules through pattern-recognition receptors, such as Toll-like receptors (TLRs), leads to transcriptional and metabolic changes that ultimately transform B cells into antibody-producing plasma cells or memory cells. BCR signaling and a number of steps downstream of it rely on coordinated action of cellular membranes and the actin cytoskeleton, tightly controlled by concerted action of multiple regulatory proteins, some of them exclusive to B cells. Here, we dissect the role of Missing-In-Metastasis (MIM), or Metastasis suppressor 1 (MTSS1), a cancer-associated membrane and actin cytoskeleton regulating protein, in B cell-mediated immunity by taking advantage of MIM knockout mouse strain. We show undisturbed B cell development and largely normal composition of B cell compartments in the periphery. Interestingly, we found that MIM-/- B cells are defected in BCR signaling in response to surface-bound antigens but, on the other hand, show increased metabolic activity after stimulation with LPS or CpG. In vivo, MIM knockout animals exhibit impaired IgM antibody responses to immunization with T cell-independent antigen. This study provides the first comprehensive characterization of MIM in B cells, demonstrates its regulatory role for B cell-mediated immunity, as well as proposes new functions for MIM in tuning receptor signaling and cellular metabolism, processes, which may also contribute to the poorly understood functions of MIM in cancer.
Collapse
Affiliation(s)
- Alexey V. Sarapulov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Petar Petrov
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sara Hernández-Pérez
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Elina Kuokkanen
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Lena Cords
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rufus V. M. Samuel
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Marika Vainio
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Didcot, United Kingdom
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Pieta K. Mattila
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
4
|
Zhao P, Chen B, Li L, Wu H, Li Y, Shaneen B, Zhan X, Gu N. Missing-in-metastasis protein promotes internalization of magnetic nanoparticles via association with clathrin light chain and Rab7. Biochim Biophys Acta Gen Subj 2019; 1863:502-510. [PMID: 30528490 PMCID: PMC8218922 DOI: 10.1016/j.bbagen.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) have been widely used in biomedical applications. Proper control of the duration of MNPs in circulation promises to improve further their applications, in particularly drug delivery. It is known that the uptake of tissue-associated MNPs is mainly carried out by macrophages. Yet, the molecular mechanism to control MNPs internalization in macrophages remains to be elusive. Missing-in-metastasis (MIM) is a scaffolding protein that is highly expressed in macrophages and regulates receptor-mediated endocytosis. We hypothesize that uptake of MNPs may also involve the function of MIM. METHODS We investigated the effect of MIM expression on the intracellular trafficking of MNPs by transmission electronic microscopy, flow cytometry, o-phenanthroline photometric analysis, Perl's staining, immunofluorescence microscopy and co-immunoprecipitation. To explore the molecular events in MIM-mediated MNPs uptake, we examined the effect of MNPs on the interaction of MIM with clathrin, Rab5 and Rab7. RESULTS Uptake of MNPs was significantly enhanced in cells overexpressing MIM. Upon exposure to MNPs, MIM was associated with clathrin light chain in endocytic vesicles and Rab7, a protein that regulates late endosomes. However, MNPs caused dissociation of MIM with Rab5, an early endosome-associated protein. CONCLUSIONS MIM regulates internalization of MNPs via promoting their trafficking from plasma membrane to late endosomes. GENERAL SIGNIFICANCE Our data unveiled a novel pathway which MNPs internalization and intracellular trafficking in macrophages. This new pathway may allow us to control the uptake of MNPs within cells by targeting MIM, thereby improving their medical applications.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Bo Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, Jiangsu 215009, PR China
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Baxter Shaneen
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Lin X, Wang H, Lou Z, Cao M, Zhang Z, Gu N. Roles of
PIP
2 in the membrane binding of
MIM
I‐
BAR
: insights from molecular dynamics simulations. FEBS Lett 2018; 592:2533-2542. [DOI: 10.1002/1873-3468.13186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
| | - Hongyin Wang
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston TX USA
| | - Zhichao Lou
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- College of Materials Science and Engineering Nanjing Forestry University China
| | - Meng Cao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences & Medical Engineering, Southeast University Nanjing China
- Collaborative Innovation Center of Suzhou Nano‐Science and Technology Suzhou Key Laboratory of Biomaterials and Technologies China
| |
Collapse
|
6
|
Zhu X, Xu X, Du K, Lu J, Song E. I-BAR protein IRSp53 regulates clathrin-independent endocytosis in a biphasic manner. Sci Bull (Beijing) 2018; 63:149-151. [PMID: 36658998 DOI: 10.1016/j.scib.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Shuyskiy LS, Levchenko VV, Negulyaev YA, Staruschenko AV, Ilatovskaya DV. Role of the Scaffold Protein MIM in the Actin-Dependent Regulation of Epithelial Sodium Channels (ENaC). Acta Naturae 2018; 10:97-103. [PMID: 30116621 PMCID: PMC6087825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epithelial Sodium Channels (ENaCs) are expressed in different organs and tissues, particularly in the cortical collecting duct (CCD) in the kidney, where they fine tune sodium reabsorption. Dynamic rearrangements of the cytoskeleton are one of the common mechanisms of ENaC activity regulation. In our previous studies, we showed that the actin-binding proteins cortactin and Arp2/3 complex are involved in the cytoskeleton-dependent regulation of ENaC and that their cooperative work decreases a channel's probability of remaining open; however, the specific mechanism of interaction between actin-binding proteins and ENaC is unclear. In this study, we propose a new component for the protein machinery involved in the regulation of ENaC, the missing-in-metastasis (MIM) protein. The MIM protein contains an IMD domain (for interaction with PIP2 -rich plasma membrane regions and Rac GTPases; this domain also possesses F-actin bundling activity), a PRD domain (for interaction with cortactin), and a WH2 domain (interaction with G-actin). The patch-clamp electrophysiological technique in whole-cell configuration was used to test the involvement of MIM in the actin-dependent regulation of ENaC. Co-transfection of ENaC subunits with the wild-type MIM protein (or its mutant forms) caused a significant reduction in ENaC-mediated integral ion currents. The analysis of the F-actin structure after the transfection of MIM plasmids showed the important role played by the domains PRD and WH2 of the MIM protein in cytoskeletal rearrangements. These results suggest that the MIM protein may be a part of the complex of actin-binding proteins which is responsible for the actin-dependent regulation of ENaC in the CCD.
Collapse
Affiliation(s)
- L. S. Shuyskiy
- Institute of Cytology of RAS, Tikhoretskij Ave. 4, St. Petersburg, 194064, Russia , Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - V. V. Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Y. A. Negulyaev
- Institute of Cytology of RAS, Tikhoretskij Ave. 4, St. Petersburg, 194064, Russia , Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Str. 2, St. Petersburg, 195251, Russia
| | - A. V. Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - D. V. Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA , Medical University of South Carolina, Department of Medicine, Division of Nephrology, 96 Jonathan Lucas St, MSC 629 CSB 822, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Li L, Baxter SS, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 2017; 130:1475-1485. [PMID: 28264927 DOI: 10.1242/jcs.198937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shaneen S Baxter
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Li L, Liu H, Baxter SS, Gu N, Ji M, Zhan X. The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum. Biochem Biophys Res Commun 2016; 479:787-792. [PMID: 27693783 DOI: 10.1016/j.bbrc.2016.09.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
The family of inverse BAR (I-BAR) domain proteins participates in a range of cellular processes associated with membrane dynamics and consists of five distinct members. Three of the I-BAR proteins, including insulin receptor tyrosine kinase substrate (IRTKS), contain an SH3 domain near their C-termini. Yet, the function of the SH3 domain of IRTKS remains uncharacterized. Here we report that in contrast to MIM, which is a prototype of I-BAR proteins and does not contain an SH3 domain, IRTKS promoted serum-induced cell migration along with enhanced phosphorylation of mitogen activated kinases Erk1/2 and p38, and activation of small GTPases Rac1 and Cdc42. In addition, cells overexpressing IRTKS exhibited an increased polarity characterized by elongated cytoplasm and extensive lamellipodia at leading edges. However, a mutant with deletion of the SH3 domain attenuated both cellular motility and p38 phosphorylation but had little effect on Erk1/2 phosphorylation. Also, a chimeric mutant in which the N-terminal portion of MIM is fused with the C-terminal IRTKS, including the SH3 domain, was able to promote chemotactic response to serum and cellular polarity. In contrast, a chimeric mutant in which the N-terminal IRTKS is fused with the C-terminal MIM failed to do so. Furthermore, treatment of cells with SB203580, a selective inhibitor of p38, also neutralized the effect of IRTKS on cell migration. These data indicate that the SH3 domain distinguishes the function of IRTKS in promoting cell migration and inducing signal transduction from those of SH3-less I-BAR proteins.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; The Center for Vascular and Inflammatory Diseases and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hongyu Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Shaneen S Baxter
- The Center for Vascular and Inflammatory Diseases and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xi Zhan
- The Center for Vascular and Inflammatory Diseases and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Zhao P, Cao M, Song L, Wu H, Hu K, Chen B, Wang Q, Gu N. Downregulation of MIM protein inhibits the cellular endocytosis process of magnetic nanoparticles in macrophages. RSC Adv 2016. [DOI: 10.1039/c6ra21530k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MIM plays a positive role in the RAW 264.7 cellular endocytosis process of iron oxide nanoparticles mainly in clathrin-mediated pathway, which is a meaningful molecular basis for biomedical applications of nanomaterials.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Meng Cao
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Lina Song
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Hao Wu
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Ke Hu
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Bo Chen
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Qiwei Wang
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Ning Gu
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| |
Collapse
|
11
|
Schemionek M, Herrmann O, Reher MM, Chatain N, Schubert C, Costa IG, Hänzelmann S, Gusmao EG, Kintsler S, Braunschweig T, Hamilton A, Helgason GV, Copland M, Schwab A, Müller-Tidow C, Li S, Holyoake TL, Brümmendorf TH, Koschmieder S. Mtss1 is a critical epigenetically regulated tumor suppressor in CML. Leukemia 2015; 30:823-32. [DOI: 10.1038/leu.2015.329] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
|