1
|
Kahle M, Ter Beek J, Hosler JP, Ädelroth P. The insertion of the non-heme Fe B cofactor into nitric oxide reductase from P. denitrificans depends on NorQ and NorD accessory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1051-1058. [PMID: 29874552 DOI: 10.1016/j.bbabio.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Bacterial NO reductases (NOR) catalyze the reduction of NO into N2O, either as a step in denitrification or as a detoxification mechanism. cNOR from Paracoccus (P.) denitrificans is expressed from the norCBQDEF operon, but only the NorB and NorC proteins are found in the purified NOR complex. Here, we established a new purification method for the P. denitrificans cNOR via a His-tag using heterologous expression in E. coli. The His-tagged enzyme is both structurally and functionally very similar to non-tagged cNOR. We were also able to express and purify cNOR from the structural genes norCB only, in absence of the accessory genes norQDEF. The produced protein is a stable NorCB complex containing all hemes and it can bind gaseous ligands (CO) to heme b3, but it is catalytically inactive. We show that this deficient cNOR lacks the non-heme iron cofactor FeB. Mutational analysis of the nor gene cluster revealed that it is the norQ and norD genes that are essential to form functional cNOR. NorQ belongs to the family of MoxR P-loop AAA+ ATPases, which are in general considered to facilitate enzyme activation processes often involving metal insertion. Our data indicates that NorQ and NorD work together in order to facilitate non-heme Fe insertion. This is noteworthy since in many cases Fe cofactor binding occurs spontaneously. We further suggest a model for NorQ/D-facilitated metal insertion into cNOR.
Collapse
Affiliation(s)
- Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Josy Ter Beek
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jonathan P Hosler
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Reed JH, Shi Y, Zhu Q, Chakraborty S, Mirts EN, Petrik ID, Bhagi-Damodaran A, Ross M, Moënne-Loccoz P, Zhang Y, Lu Y. Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism. J Am Chem Soc 2017; 139:12209-12218. [PMID: 28768416 PMCID: PMC5673108 DOI: 10.1021/jacs.7b05800] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of a nonheme metal, such as copper and iron, in the heme-copper oxidase (HCO) superfamily is critical to the enzymatic activity of reducing O2 to H2O, but the exact mechanism the nonheme metal ion uses to confer and fine-tune the activity remains to be understood. We herein report that manganese and cobalt can bind to the same nonheme site and confer HCO activity in a heme-nonheme biosynthetic model in myoglobin. While the initial rates of O2 reduction by the Mn, Fe, and Co derivatives are similar, the percentages of reactive oxygen species (ROS) formation are 7%, 4%, and 1% and the total turnovers are 5.1 ± 1.1, 13.4 ± 0.7, and 82.5 ± 2.5, respectively. These results correlate with the trends of nonheme-metal-binding dissociation constants (35, 22, and 9 μM) closely, suggesting that tighter metal binding can prevent ROS release from the active site, lessen damage to the protein, and produce higher total turnover numbers. Detailed spectroscopic, electrochemical, and computational studies found no evidence of redox cycling of manganese or cobalt in the enzymatic reactions and suggest that structural and electronic effects related to the presence of different nonheme metals lead to the observed differences in reactivity. This study of the roles of nonheme metal ions beyond the Cu and Fe found in native enzymes has provided deeper insights into nature's choice of metal ion and reaction mechanism and allows for finer control of the enzymatic activity, which is a basis for the design of efficient catalysts for the oxygen reduction reaction in fuel cells.
Collapse
Affiliation(s)
- Julian H. Reed
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yelu Shi
- Department of Biomedical Engineering, Chemistry, and Biological
Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Qianhong Zhu
- Division of Environmental & Biomolecular Systems, Institute
of Environmental Health, Oregon Health & Science University, Portland, OR,
97239, USA
| | - Saumen Chakraborty
- Department of Chemistry & Biochemistry, University of
Mississippi, Oxford, Mississippi, 38677, USA
| | - Evan N. Mirts
- Center for Biophysics and Quantitative Biology, University of
Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Igor D. Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign,
Urbana, IL, 61801, USA
| | - Ambika Bhagi-Damodaran
- Department of Pharmaceutical Chemistry, University of California,
San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Ross
- Department of Chemistry, Northwestern University, Evanston, IL,
60208, USA
| | - Pierre Moënne-Loccoz
- Division of Environmental & Biomolecular Systems, Institute
of Environmental Health, Oregon Health & Science University, Portland, OR,
97239, USA
| | - Yong Zhang
- Department of Biomedical Engineering, Chemistry, and Biological
Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of
Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign,
Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Sakurai N, Kataoka K, Sugaya N, Shimodaira T, Iwamoto M, Shoda M, Horiuchi H, Kiyono M, Ohta Y, Triwiyono B, Seo D, Sakurai T. Heterologous expression of Halomonas halodenitrificans nitric oxide reductase and its N-terminally truncated NorC subunit in Escherichia coli. J Inorg Biochem 2017; 169:61-67. [PMID: 28131879 DOI: 10.1016/j.jinorgbio.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/30/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022]
Abstract
Halomonas halodenitrificans nitric oxide reductase (NOR) is the membrane-bound heterodimer complex of NorC, which contains a low-spin heme c center, and NorB, which contains a low-spin heme b center, a high-spin heme b3 center, and a non-heme FeB center. The soluble domain of NorC, NorC* (ΔMet1-Val37) was heterologously expressed in Escherichia coli using expression plasmids harboring the truncated norC gene deleted of its 84 5'-terminal nucleotides. Analogous scission of the N-terminal helix as the membrane anchor took place when the whole norC gene was used. NorC* exhibited spectra typical of a low-spin heme c. In addition, NorC* functioned as the acceptor of an electron from a cytochrome c isolated from the periplasm of H. halodenitrificans and small reducing reagents. The redox potential of NorC* shifted ca. 40mV in the negative direction from that of NorC. Unlike NorC, recombinant NorB was not heterologously expressed. However, recombinant NOR (rNOR) could be expressed in E. coli by using a plasmid harboring all genes in the nor operon, norCBQDX, from which the three hairpin loops (mRNA) were deleted, and by using the ccm genes for the maturation of C-type heme. rNOR exhibited the same spectroscopic properties and reactivity to NO and O2 as NOR, although its enzymatic activity toward NO was considerably decreased. These results on the expression of rNOR and NorC* will allow us to develop more profound studies on the properties of the four Fe centers and the reaction mechanism of NOR from this halophilic denitrifying bacterium.
Collapse
Affiliation(s)
- Nobuhiko Sakurai
- Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho, Nagoya 467-8501, Japan.
| | - Kunishige Kataoka
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Noriko Sugaya
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Takaki Shimodaira
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Mie Iwamoto
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Munehiro Shoda
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hajime Horiuchi
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Miyuki Kiyono
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yasuke Ohta
- Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho, Nagoya 467-8501, Japan
| | - Bambang Triwiyono
- Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho, Nagoya 467-8501, Japan
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Bhagi-Damodaran A, Petrik I, Lu Y. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Isr J Chem 2016; 56:773-790. [PMID: 27994254 PMCID: PMC5161413 DOI: 10.1002/ijch.201600033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In biology, a heme-Cu center in heme-copper oxidases (HCOs) is used to catalyze the four-electron reduction of oxygen to water, while a heme-nonheme diiron center in nitric oxide reductases (NORs) is employed to catalyze the two-electron reduction of nitric oxide to nitrous oxide. Although much progress has been made in biochemical and biophysical studies of HCOs and NORs, structural features responsible for similarities and differences within the two enzymatic systems remain to be understood. Here, we discuss the progress made in the design and characterization of myoglobin-based enzyme models of HCOs and NORs. In particular, we focus on use of these models to understand the structure-function relations between HCOs and NORs, including the role of nonheme metals, conserved amino acids in the active site, heme types and hydrogen-bonding network in tuning enzymatic activities and total turnovers. Insights gained from these studies are summarized and future directions are proposed.
Collapse
Affiliation(s)
| | - Igor Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| |
Collapse
|
5
|
Rizzi AC, Neuman NI, González PJ, Brondino CD. EPR as a Tool for Study of Isolated and Coupled Paramagnetic Centers in Coordination Compounds and Macromolecules of Biological Interest. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Neuman NI, Burna E, Baggio R, Passeggi MCG, Rizzi AC, Brondino CD. Transition from isolated to interacting copper(ii) pairs in extended lattices evaluated by single crystal EPR spectroscopy. Inorg Chem Front 2015. [DOI: 10.1039/c5qi00086f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystal EPR experiments in copper-doped dimeric Zn(tda)(phen) allowed determination of Cu(ii) g- and A-matrices and ZFS parameters, which are used to evaluate the interdimeric exchange interaction in pure Cu(tda)(phen).
Collapse
Affiliation(s)
- Nicolás I. Neuman
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- S3000ZAA Santa Fe
- Argentina
| | - Emerson Burna
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- S3000ZAA Santa Fe
- Argentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones
- Comisión Nacional de Energía Atómica
- Avenida Gral Paz y Constituyentes
- San Martín
- Argentina
| | - Mario C. G. Passeggi
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- S3000ZAA Santa Fe
- Argentina
| | - Alberto C. Rizzi
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- S3000ZAA Santa Fe
- Argentina
| | - Carlos D. Brondino
- Departamento de Física
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- S3000ZAA Santa Fe
- Argentina
| |
Collapse
|