1
|
The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nat Commun 2022; 13:5851. [PMID: 36195619 PMCID: PMC9532399 DOI: 10.1038/s41467-022-33593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.
Collapse
|
2
|
Diederichs T, Tampé R. Single Cell-like Systems Reveal Active Unidirectional and Light-Controlled Transport by Nanomachineries. ACS NANO 2021; 15:6747-6755. [PMID: 33724767 PMCID: PMC8157534 DOI: 10.1021/acsnano.0c10139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cellular life depends on transport and communication across membranes, which is emphasized by the fact that membrane proteins are prime drug targets. The cell-like environment of membrane proteins has gained increasing attention based on its important role in function and regulation. As a versatile scaffold for bottom-up synthetic biology and nanoscience, giant liposomes represent minimalistic models of living cells. Nevertheless, the incorporation of fragile multiprotein membrane complexes still remains a major challenge. Here, we report on an approach for the functional reconstitution of membrane assemblies exemplified by human and bacterial ATP-binding cassette (ABC) transporters. We reveal that these nanomachineries transport substrates unidirectionally against a steep concentration gradient. Active substrate transport can be spatiotemporally resolved in single cell-like compartments by light, enabling real-time tracking of substrate export and import in individual liposomes. This approach will help to construct delicate artificial cell-like systems.
Collapse
Affiliation(s)
- Tim Diederichs
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter,
Goethe-University Frankfurt, Max-von Laue-Straße 9,
60438 Frankfurt a.M., Germany
| |
Collapse
|
3
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
4
|
Zhu Z, Han X, Wang Y, Liu W, Lu Y, Xu C, Wang X, Hao L, Song Y, Huang S, Rizak JD, Li Y, Han C. Identification of Specific Nuclear Genetic Loci and Genes That Interact With the Mitochondrial Genome and Contribute to Fecundity in Caenorhabditis elegans. Front Genet 2019; 10:28. [PMID: 30778368 PMCID: PMC6369210 DOI: 10.3389/fgene.2019.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Previous studies have found that fecundity is a multigenic trait regulated, in part, by mitochondrial-nuclear (mit-n) genetic interactions. However, the identification of specific nuclear genetic loci or genes interacting with the mitochondrial genome and contributing to the quantitative trait fecundity is an unsolved issue. Here, a panel of recombinant inbred advanced intercrossed lines (RIAILs), established from a cross between the N2 and CB4856 strains of C. elegans, were used to characterize the underlying genetic basis of mit-n genetic interactions related to fecundity. Sixty-seven single nucleotide polymorphisms (SNPs) were identified by association mapping to be linked with fecundity among 115 SNPs linked to mitotype. This indicated significant epistatic effects between nuclear and mitochondria genetics on fecundity. In addition, two specific nuclear genetic loci interacting with the mitochondrial genome and contributing to fecundity were identified. A significant reduction in fecundity was observed in the RIAILs that carried CB4856 mitochondria and a N2 genotype at locus 1 or a CB4856 genotype at locus 2 relative to the wild-type strains. Then, a hybrid strain (CNC10) was established, which was bred as homoplasmic for the CB4856 mtDNA genome and N2 genotype at locus 1 in the CB4856 nuclear background. The mean fecundity of CNC10 was half the fecundity of the control strain. Several functional characteristics of the mitochondria in CNC10 were also influenced by mit-n interactions. Overall, experimental evidence was presented that specific nuclear genetic loci or genes have interactions with the mitochondrial genome and are associated with fecundity. In total, 18 genes were identified using integrative approaches to have interactions with the mitochondrial genome and to contribute to fecundity.
Collapse
Affiliation(s)
- Zuobin Zhu
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Han
- Center of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuechen Wang
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Yue Lu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Chang Xu
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Xitao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanjian Song
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Shi Huang
- School of Life Sciences, Xiangya Medical School, Central South University, Changsha, China
| | | | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Conghui Han
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
5
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Tanji T, Shiraishi H, Nishikori K, Aoyama R, Ohashi K, Maeda M, Ohashi-Kobayashi A. Molecular dissection of Caenorhabditis elegans ATP-binding cassette transporter protein HAF-4 to investigate its subcellular localization and dimerization. Biochem Biophys Res Commun 2017; 490:78-83. [PMID: 28427936 DOI: 10.1016/j.bbrc.2017.04.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half-type ATP-binding cassette (ABC) transporter proteins, which are highly homologous to the human peptide transporter protein, transporter associated with antigen processing-like (TAPL, ABCB9). TAPL forms homodimers and localizes to lysosomes, whereas HAF-4 and HAF-9 form heterodimers and localize to intestine-specific non-acidified organelles. Both TAPL and HAF-4/HAF-9 are predicted to have four amino-terminal transmembrane helices [transmembrane domain 0 (TMD0)] additional to the six transmembrane helices that form the canonical core domain of ABC transporters with a cytosolic ABC region. TAPL requires its amino-terminal domain for localization to lysosomes; however, molecular mechanisms underlying HAF-4 and HAF-9 localization to their target organelles had not been elucidated. Here, we demonstrate that the mechanisms underlying HAF-4 localization differ from those underlying TAPL localization. Using transgenic C. elegans expressing mutant HAF-4 proteins labeled with green fluorescent protein, we reveal that the TMD0 of HAF-4 was not sufficient for proper localization of the protein. The mutant HAF-4, which lacked TMD0, localized to intracellular organelles similarly to the wild-type protein and functioned normally in the biogenesis of its localizing organelles, indicating that the TMD0 of HAF-4 is dispensable for both its localization and function.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Reiko Aoyama
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kazuaki Ohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatomo Maeda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
ABC-B transporter genes in Dirofilaria immitis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:116-24. [PMID: 27164440 PMCID: PMC4919315 DOI: 10.1016/j.ijpddr.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022]
Abstract
Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchuscontortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Identification of ABC-B full and half transporter genes in Dirofilaria immitis. Phylogenetic analysis of the D. immitis ABC-B transporter genes. Lower number of ABC-B transporter genes in D. immitis compared with Clade V nematodes.
Collapse
|
8
|
Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A. Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biol 2016; 17:4. [PMID: 26817689 PMCID: PMC4729119 DOI: 10.1186/s12860-015-0076-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intestinal cells of Caenorhabditis elegans are filled with heterogeneous granular organelles that are associated with specific organ functions. The best studied of these organelles are lipid droplets and acidified gut granules associated with GLO-1, a homolog of the small GTPase Rab38. In this study, we characterized a subset of the intestinal granules in which HAF-4 and HAF-9 localize on the membrane. HAF-4 and HAF-9 are ATP-binding cassette (ABC) transporter proteins that are homologous to the mammalian lysosomal peptide transporter TAPL (transporter associated with antigen processing-like, ABCB9). RESULTS Using transgenic worms expressing fluorescent protein-tagged marker proteins, we demonstrated that the HAF-4- and HAF-9-localizing organelles are not lipid droplets and do not participate in yolk protein transport. They were also ruled out as GLO-1-positive acidified gut granules. Furthermore, we clarified that the late endosomal protein RAB-7 localizes to the HAF-4- and HAF-9-localizing organelles and is required for their biogenesis. CONCLUSIONS Our results indicate that the HAF-4- and HAF-9-localizing organelles are distinct intestinal organelles associated with the endocytic pathway.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Syoko Haga
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yuki Kanno
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yusuke Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Mai Takaya
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Present address: Saitama University Brain Science Institute, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
9
|
Zhu Z, Lu Q, Zeng F, Wang J, Huang S. Compatibility between mitochondrial and nuclear genomes correlates with the quantitative trait of lifespan in Caenorhabditis elegans. Sci Rep 2015; 5:17303. [PMID: 26601686 PMCID: PMC4658563 DOI: 10.1038/srep17303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in mitochondrial genome have epistatic effects on organisms depending on
the nuclear background, but a role for the compatibility of mitochondrial-nuclear
genomes (mit-n) in the quantitative nature of a complex trait remains unexplored. We
studied a panel of recombinant inbred advanced intercrossed lines (RIAILs) of C.
elegans that were established from a cross between the N2 and HW strains. We
determined the HW nuclear genome content and the mitochondrial type (HW or N2) of
each RIAIL strain. We found that the degree of mit-n compatibility was correlated
with the lifespans but not the foraging behaviors of RIAILs. Several known
aging-associated QTLs individually showed no relationship with mitotypes but
collectively a weak trend consistent with a role in mit-n compatibility. By
association mapping, we identified 293 SNPs that showed linkage with lifespan and a
relationship with mitotypes consistent with a role in mit-n compatibility. We
further found an association between mit-n compatibility and several functional
characteristics of mitochondria as well as the expressions of genes involved in the
respiratory oxidation pathway. The results provide the first evidence implicating
mit-n compatibility in the quantitative nature of a complex trait, and may be
informative to certain evolutionary puzzles on hybrids.
Collapse
Affiliation(s)
- Zuobin Zhu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qing Lu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Fangfang Zeng
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Junjing Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Shi Huang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Medical School, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| |
Collapse
|
10
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|