1
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
2
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
3
|
Cao Z, Yan Q, Zhang M, Zhu Y, Liu J, Jiang Y, Zhen X, Xu M, Yue Q, Zhou J, Zhou Q, Wang X, Ding L, Sun H, Yan G. FHL1 mediates HOXA10 deacetylation via SIRT2 to enhance blastocyst-epithelial adhesion. Cell Death Dis 2022; 8:461. [DOI: 10.1038/s41420-022-01253-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
AbstractRecurrent implantation failure (RIF) is a rather thorny problem in the clinical practice of assisted reproductive technology. Due to the complex aetiology of RIF, its pathogenesis is far from fully understood, and there is no effective treatment available. Here, We explored the regulatory mechanism of the four half-domains of LIM domain 1 (FHL1), which is significantly downregulated in the endometrium of RIF patients, in blastocyst-epithelial adhesion. Indeed, FHL1 expression was dramatically increased in normal female mid-secretory endometrial epithelial cells and was abnormally reduced in RIF patients. Furthermore, FHL1 overexpression promoted blastocyst-epithelial adhesion, and interfering with FHL1 expression in the mouse uterus significantly inhibited embryo implantation. Mechanistically, FHL1 did not regulate HOXA10 mRNA expression but increased HOXA10 protein stability and activated HOXA10, thereby promoting its regulation of downstream gene expression and the β3 integrin/FAK pathway. Meanwhile, FHL1 regulates HOXA10 function by increasing HOXA10 deacetylation through enhanced binding of HOXA10 and SIRT2. SIRT2-specific inhibitors can significantly inhibit this effect. In the endometrial epithelial cells of RIF patients, the correlation between FHL1 and HOXA10 and its downstream target genes has also been verified. Finally, our data indicated FHL1 is a regulatory molecule that promotes blastocyst-epithelial adhesion. Altogether, downstream dysfunction due to aberrant FHL1 expression is an important molecular basis for embryo implantation failure in patients with RIF and to provide new potential therapeutic targets.
Collapse
|
4
|
Stathopoulou K, Schnittger J, Raabe J, Fleischer F, Mangels N, Piasecki A, Findlay J, Hartmann K, Krasemann S, Schlossarek S, Uebeler J, Wixler V, Blake DJ, Baillie GS, Carrier L, Ehler E, Cuello F. CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS J 2022; 289:4622-4645. [PMID: 35176204 DOI: 10.1111/febs.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Josef Schnittger
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Frederic Fleischer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Nils Mangels
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Jane Findlay
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - June Uebeler
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Germany
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK.,Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), King's College London, UK
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
5
|
She M, Zhang J, Jiang T, Zhang Y, Liu Y, Tang M, Zeng Q. The function of Lmpt in Drosophila heart tissue. Biochem Biophys Res Commun 2022; 612:15-21. [DOI: 10.1016/j.bbrc.2022.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
|
6
|
Disruption of the CCDC43-FHL1 interaction triggers apoptosis in gastric cancer cells. Exp Cell Res 2022; 415:113107. [DOI: 10.1016/j.yexcr.2022.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
|
7
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
8
|
Wood BM, Bossuyt J. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System. Front Pharmacol 2017; 8:9. [PMID: 28174535 PMCID: PMC5258689 DOI: 10.3389/fphar.2017.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| |
Collapse
|
9
|
The longissimus thoracis muscle proteome in Alentejana bulls as affected by growth path. J Proteomics 2017; 152:206-215. [DOI: 10.1016/j.jprot.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022]
|
10
|
Tran MK, Kurakula K, Koenis DS, de Vries CJM. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:219-28. [PMID: 26548523 DOI: 10.1016/j.bbamcr.2015.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
FHL2 belongs to the LIM-domain only proteins and contains four and a half LIM domains, each of which are composed of two zinc finger structures. FHL2 exhibits specific interaction with proteins exhibiting diverse functions, including transmembrane receptors, transcription factors and transcription co-regulators, enzymes, and structural proteins. The function of these proteins is regulated by FHL2, which modulates intracellular signal transduction pathways involved in a plethora of cellular tasks. The present review summarizes the current knowledge on the protein interactome of FHL2 and provides an overview of the functional implication of these interactions in apoptosis, migration, and regulation of nuclear receptor function. FHL2 was originally identified in the heart and there is extensive literature available on the role of FHL2 in the cardiovascular system, which is also summarized in this review.
Collapse
Affiliation(s)
- M Khang Tran
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Friedrich FW, Reischmann S, Schwalm A, Unger A, Ramanujam D, Münch J, Müller OJ, Hengstenberg C, Galve E, Charron P, Linke WA, Engelhardt S, Patten M, Richard P, van der Velden J, Eschenhagen T, Isnard R, Carrier L. FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Res Cardiol 2014; 109:451. [PMID: 25358972 PMCID: PMC4215105 DOI: 10.1007/s00395-014-0451-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/04/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
Abstract
Based on evidence that FHL2 (four and a half LIM domains protein 2) negatively regulates cardiac hypertrophy we tested whether FHL2 altered expression or variants could be associated with hypertrophic cardiomyopathy (HCM). HCM is a myocardial disease characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis and is mainly caused by mutations in genes coding for sarcomeric proteins. FHL2 mRNA level, FHL2 protein level and I-band-binding density were lower in HCM patients than control individuals. Screening of 121 HCM patients without mutations in established disease genes identified 2 novel (T171M, V187L) and 4 known (R177Q, N226N, D268D, P273P) FHL2 variants in unrelated HCM families. We assessed the structural and functional consequences of the nonsynonymous substitutions after adeno-associated viral-mediated gene transfer in cardiac myocytes and in 3D-engineered heart tissue (EHT). Overexpression of FHL2 wild type or nonsynonymous substitutions in cardiac myocytes markedly down-regulated α-skeletal actin and partially blunted hypertrophy induced by phenylephrine or endothelin-1. After gene transfer in EHTs, force and velocity of both contraction and relaxation were higher with T171M and V187L FHL2 variants than wild type under basal conditions. Finally, chronic phenylephrine stimulation depressed EHT function in all groups, but to a lower extent in T171M-transduced EHTs. These data suggest that (1) FHL2 is down-regulated in HCM, (2) both FHL2 wild type and variants partially protected phenylephrine- or endothelin-1-induced hypertrophy in cardiac myocytes, and (3) FHL2 T171M and V187L nonsynonymous variants induced altered EHT contractility. These findings provide evidence that the 2 novel FHL2 variants could increase cardiac function in HCM.
Collapse
Affiliation(s)
- Felix W. Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Aileen Schwalm
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Julia Münch
- University Heart Center Hamburg, Hamburg, Germany
| | - Oliver J. Müller
- Department of Cardiology, Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christian Hengstenberg
- Present Address: German Heart Centre of the Technical University Munich, Munich, Germany
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Enrique Galve
- Unitat d’Insuficiència Cardiaca, Servei de Cardiologia, Hospital Vall d’Hebron, Barcelona, Spain
| | - Philippe Charron
- Inserm, U956, Paris, France
- ICAN Institute, UPMC Univ Paris 06, Paris, France
| | - Wolfgang A. Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich, Munich, Germany
| | | | - Pascale Richard
- Inserm, U956, Paris, France
- ICAN Institute, UPMC Univ Paris 06, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, AP-HP Centre de référence des maladies cardiaques héréditaires, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, AP-HP,UF Cardiogénétique et Myogénétique, Paris, France
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Richard Isnard
- Inserm, U956, Paris, France
- ICAN Institute, UPMC Univ Paris 06, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, AP-HP Centre de référence des maladies cardiaques héréditaires, Paris, France
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
12
|
Qiu W, Zhang F, Steinberg SF. The protein kinase D1 COOH terminus: marker or regulator of enzyme activity? Am J Physiol Cell Physiol 2014; 307:C606-10. [PMID: 25080487 DOI: 10.1152/ajpcell.00155.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase D1 (PKD1) is a Ser/Thr kinase implicated in a wide variety of cellular responses. PKD1 activation is generally attributed to a PKC-dependent pathway that leads to phosphorylation of the activation loop at Ser(744)/Ser(748). This modification increases catalytic activity, including that toward an autophosphorylation site (Ser(916)) in a postsynaptic density-95/disks large/zonula occludens-1 (PDZ)-binding motif at the extreme COOH terminus. However, there is growing evidence that PKD1 activation can also result from a PKC-independent autocatalytic reaction at Ser(744)/Ser(748) and that certain stimuli increase in PKD1 phosphorylation at Ser(744)/S(748) without an increase in autophosphorylation at Ser(916). This study exposes a mechanism that results in a discrepancy between PKD1 COOH-terminal autocatalytic activity and activity toward other substrates. We show that PKD1 constructs harboring COOH-terminal epitope tags display high levels of in vitro activation loop autocatalytic activity and activity toward syntide-2 (a peptide substrate), but no Ser(916) autocatalytic activity. Cell-based studies show that the COOH-terminal tag, adjacent to PKD1's PDZ1-binding motif, does not grossly influence PKD1 partitioning between soluble and particulate fractions in resting cells or PKD1 translocation to the particulate fraction following treatment with PMA. However, a COOH-terminal tag that confers a high level of activation loop autocatalytic activity decreases the PKC requirement for agonist-dependent PKD1 activation in cells. The recognition that COOH-terminal tags alter PKD1's pharmacological profile is important from a technical standpoint. The altered dynamics and activation mechanisms for COOH-terminal-tagged PKD1 enzymes also could model the signaling properties of localized pools of enzyme anchored through the COOH terminus to PDZ domain-containing scaffolding proteins.
Collapse
Affiliation(s)
- Weihua Qiu
- Department of Pharmacology, Columbia University, New York, New York
| | - Fan Zhang
- Department of Pharmacology, Columbia University, New York, New York
| | | |
Collapse
|
13
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|