1
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
2
|
Sale MJ, Minihane E, Monks NR, Gilley R, Richards FM, Schifferli KP, Andersen CL, Davies EJ, Vicente MA, Ozono E, Markovets A, Dry JR, Drew L, Flemington V, Proia T, Jodrell DI, Smith PD, Cook SJ. Targeting melanoma's MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors. Nat Commun 2019; 10:5167. [PMID: 31727888 PMCID: PMC6856071 DOI: 10.1038/s41467-019-12409-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.
Collapse
Affiliation(s)
- Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Emma Minihane
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Noel R Monks
- Oncology R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Frances M Richards
- Pharmacology and Drug Development Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kevin P Schifferli
- Oncology R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | | | - Emma J Davies
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mario Aladren Vicente
- CRUK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Eiko Ozono
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | | - Jonathan R Dry
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Lisa Drew
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Vikki Flemington
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Theresa Proia
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Duncan I Jodrell
- Pharmacology and Drug Development Group, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul D Smith
- Oncology R&D, AstraZeneca, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
3
|
Repression of TCF3/E2A contributes to Hodgkin lymphomagenesis. Oncotarget 2018; 7:36854-36864. [PMID: 27166193 PMCID: PMC5095044 DOI: 10.18632/oncotarget.9210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Although Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) derived from germinal or post germinal B cells, they have lost the B cell phenotype in the process of lymphomagenesis. The phenomenon can be at least partially explained by repression of B-cell-specific transcription factors including TCF3, early B-cell factor 1 (EBF1), SPI1/PU.1, and FOXO1, which are down-regulated by genetic and epigenetic mechanisms. The unique phenotype has been suspected to be advantageous for survival of HRS cells. Ectopic expression of some of these transcription factors (EBF1, PU.1, FOXO1) indeed impaired survival of cHL cells. Here we show that forced expression of TCF3 causes cell death and cell cycle arrest in cHL cell lines. Mechanistically, TCF3 overexpression modulated expression of multiple pro-apoptotic genes including BIK, APAF1, FASLG, BOK, and TNFRSF10A/DR4. We conclude that TCF3 inactivation contributes not only to extinguishing of B cell phenotype but also to cHL oncogenesis.
Collapse
|