1
|
Atul, Chaudhary P, Gupta S, Shoaib R, Pasupureddy R, Goyal B, Kumar B, Singh OP, Dixit R, Singh S, Akhter M, Kapoor N, Pande V, Chakraborti S, Vashisht K, Pandey KC. Artemisinin resistance in P. falciparum: probing the interacting partners of Kelch13 protein in parasite. J Glob Antimicrob Resist 2023; 35:67-75. [PMID: 37633420 DOI: 10.1016/j.jgar.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
OBJECTIVES Artemisinin (ART) resistance in Plasmodium is threatening the artemisinin combination therapies-the first line of defence against malaria. ART resistance has been established to be mediated by the Plasmodium Kelch13 (PfK13) protein. For the crucial role of PfK13 in multiple pathways of the Plasmodium life cycle and ART resistance, it is imperative that we investigate its interacting partners. METHODS We recombinantly expressed PfK13-p (Bric a brac/Poxvirus and zinc finger and propeller domains), generating anti-PfK13-p antibodies to perform co-immunoprecipitation assays and probed PfK13 interacting partners. Surface plasmon resonance and pull-down assays were performed to establish physical interactions of representative proteins with PfK13-p. RESULTS The co-immunoprecipitation assays identified 17 proteins with distinct functions in the parasite life cycle- protein folding, cellular metabolism, and protein binding and invasion. In addition to the overlap with previously identified proteins, our study identified 10 unique proteins. Fructose-biphosphate aldolase and heat shock protein 70 demonstrated strong biophysical interaction with PfK13-p, with KD values of 6.6 µM and 7.6 µM, respectively. Additionally, Plasmodium merozoite surface protein 1 formed a complex with PfK13-p, which is evident from the pull-down assay. CONCLUSION This study adds to our knowledge of the PfK13 protein in mediating ART resistance by identifying new PfK13 interacting partners. Three representative proteins-fructose-biphosphate aldolase, heat shock protein 70, and merozoite surface protein 1-demonstrated clear evidence of biophysical interactions with PfK13-p. However, elucidation of the functional relevance of these physical interactions are crucial in context of PfK13 role in ART resistance.
Collapse
Affiliation(s)
- Atul
- ICMR-National Institute of Malaria Research, New Delhi, India; Kumaun University, Nainital, Uttarakhand, India
| | - Preeti Chaudhary
- ICMR-National Institute of Malaria Research, New Delhi, India; Department of Life Sciences, IGNOU, Delhi, India
| | - Swati Gupta
- International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Rumaisha Shoaib
- School of Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| | | | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India
| | - Bhumika Kumar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Rajnikant Dixit
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- School of Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| | | | - Neera Kapoor
- Department of Life Sciences, IGNOU, Delhi, India
| | - Veena Pande
- Kumaun University, Nainital, Uttarakhand, India
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India
| | - Kapil Vashisht
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovation Research, Uttar Pradesh, India.
| |
Collapse
|
2
|
Tanneru N, Nivya MA, Adhikari N, Saxena K, Rizvi Z, Sudhakar R, Nagwani AK, Atul, Mohammed Abdul Al-Nihmi F, Kumar KA, Sijwali PS. Plasmodium DDI1 is a potential therapeutic target and important chromatin-associated protein. Int J Parasitol 2023; 53:157-175. [PMID: 36657610 DOI: 10.1016/j.ijpara.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 01/18/2023]
Abstract
DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.
Collapse
Affiliation(s)
- Nandita Tanneru
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - M Angel Nivya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Navin Adhikari
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Kanika Saxena
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Zeba Rizvi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Renu Sudhakar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Amit Kumar Nagwani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Atul
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | | | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
3
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
4
|
Govindarajalu G, Rizvi Z, Kumar D, Sijwali PS. Lyse-Reseal Erythrocytes for Transfection of Plasmodium falciparum. Sci Rep 2019; 9:19952. [PMID: 31882761 PMCID: PMC6934678 DOI: 10.1038/s41598-019-56513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
Simple and efficient transfection methods for genetic manipulation of Plasmodium falciparum are desirable to identify, characterize and validate the genes with therapeutic potential and better understand parasite biology. Among the available transfection techniques for P. falciparum, electroporation-based methods, particularly electroporation of ring-infected RBCs is routinely used. Nonetheless, transfection of P. falciparum remains a resource-intensive procedure. Here, we report a simple and economic transfection method for P. falciparum, which is termed as the lyse-reseal erythrocytes for transfection (LyRET). It involved lysis of erythrocytes with a hypotonic RBC lysis buffer containing the desired plasmid DNA, followed by resealing by adding a high salt buffer. These DNA-encapsulated lyse-reseal erythrocytes were mixed with P. falciparum trophozoite/schizont stages and subjected to selection for the plasmid-encoded drug resistance. In parallel, transfections were also done by the methods utilizing electroporation of DNA into uninfected RBCs and parasite-infected RBCs. The LyRET method successfully transfected 3D7 and D10 strains with different plasmids in 63 of the 65 attempts, with success rate similar to transfection by electroporation of DNA into infected RBCs. The cost effectiveness and comparable efficiency of LyRET method makes it an alternative to the existing transfection methods for P. falciparum, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | - Zeba Rizvi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, TS, India
| | - Deepak Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, TS, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, TS, India.
| |
Collapse
|
5
|
Nair DN, Prasad R, Singhal N, Bhattacharjee M, Sudhakar R, Singh P, Thanumalayan S, Kiran U, Sharma Y, Sijwali PS. A conserved human DJ1-subfamily motif (DJSM) is critical for anti-oxidative and deglycase activities of Plasmodium falciparum DJ1. Mol Biochem Parasitol 2018; 222:70-80. [DOI: 10.1016/j.molbiopara.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 02/01/2023]
|
6
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
7
|
Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1. mBio 2017; 8:mBio.02189-16. [PMID: 28246362 PMCID: PMC5347346 DOI: 10.1128/mbio.02189-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these organelles (calcium-dependent kinase 1) and synergizes with calcium to potentiate kinase activity. This interaction is direct, phosphodependent, and necessary for the normal secretion of these important organelles.
Collapse
|
8
|
Independent amino acid residues in the S2 pocket of falcipain-3 determine its specificity for P2 residues in substrates. Mol Biochem Parasitol 2015; 202:11-22. [DOI: 10.1016/j.molbiopara.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|