1
|
Lai R, Li H. Mechanism of Ampicillin Hydrolysis by New Delhi Metallo-β-Lactamase 1: Insight From QM/MM MP2 Calculation. J Comput Chem 2025; 46:e27544. [PMID: 39636155 PMCID: PMC11619567 DOI: 10.1002/jcc.27544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The New Delhi metallo-β-lactamase 1 (NDM-1) can hydrolyze nearly all clinically important β-lactam antibiotics, narrowing the options for effective treatment of bacterial infections. QM/MM MP2 calculations are performed to reveal the mechanism of ampicillin hydrolysis catalyzed by NDM-1. It is found that the rate-determining step is the dissociation of hydrolyzed ampicillin from the NDM-1 active site, which requires a proton transfer from the bridging neutral water molecule to the newly formed carboxylate group. The precedent reaction steps, including the hydroxide nucleophilic addition, CN bond cleavage, and the protonation of the negative lactam N atom by a solvent water molecule, all require insignificant activation free energies. The calculated activation free energy for this rate-determining proton transfer step is 16.0 kcal/mol, in good agreement with experimental values of 13.7 ~ 14.7 kcal/mol. This proton transfer step exhibits a solvent hydrogen-deuterium kinetic isotope effect of 3.4, consistent with several experimental kinetic results.
Collapse
Affiliation(s)
- Rui Lai
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hui Li
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular CommunicationUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
2
|
Linciano P, Cendron L, Gianquinto E, Spyrakis F, Tondi D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect Dis 2019; 5:9-34. [PMID: 30421910 DOI: 10.1021/acsinfecdis.8b00247] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The worldwide emergence of New Delhi metallo-β-lactamase-1 (NDM-1) as a carbapenemase able to hydrolyze nearly all available β-lactam antibiotics has characterized the past decade, endangering efficacious antibacterial treatments. No inhibitors for NDM-1 are available in therapy, nor are promising compounds in the pipeline for future NDM-1 inhibitors. We report the studies dedicated to the design and development of effective NDM-1 inhibitors. The discussion for each agent moves from the employed design strategy to the ability of the identified inhibitor to synergize β-lactam antibiotics. A structural analysis of NDM-1 mechanism of action based on selected X-ray complexes is also reported: the intrinsic flexibility of the binding site and the comparison between penicillin/cephalosporin and carbapenem mechanisms of hydrolysis are evaluated. Despite the valuable progress in terms of structural and mechanistic information, the design of a potent NDM-1 inhibitor to be introduced in therapy remains challenging. Certainly, only the deep knowledge of NDM-1 architecture and of the variable mechanism of action that NDM-1 employs against different classes of substrates could orient a successful drug discovery campaign.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
3
|
Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1. Antimicrob Agents Chemother 2018; 62:AAC.01579-18. [PMID: 30150473 DOI: 10.1128/aac.01579-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
β-Lactam antibiotics are the mainstay for the treatment of bacterial infections. However, elevated resistance to these antibiotics mediated by metallo-β-lactamases (MBLs) has become a global concern. New Delhi metallo-β-lactamase-1 (NDM-1), a newly added member of the MBL family that can hydrolyze almost all β-lactam antibiotics, has rapidly spread all over the world and poses serious clinical threats. Broad-spectrum and mechanism-based inhibitors against all MBLs are highly desired, but the differential mechanisms of MBLs toward different antibiotics pose a great challenge. To facilitate the design of mechanism-based inhibitors, we investigated the active-site conformational changes of NDM-1 through the determination of a series of 15 high-resolution crystal structures in native form and in complex with products and by using biochemical and biophysical studies, site-directed mutagenesis, and molecular dynamics computation. The structural studies reveal the consistency of the active-site conformations in NDM-1/product complexes and the fluctuation in native NDM-1 structures. The enzymatic measurements indicate a correlation between enzymatic activity and the active-site fluctuation, with more fluctuation favoring higher activity. This correlation is further validated by structural and enzymatic studies of the Q123G mutant. Our combinational studies suggest that active-site conformational fluctuation promotes the enzymatic activity of NDM-1, which may guide further mechanism studies and inhibitor design.
Collapse
|
4
|
Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, Clayton D, Miller C, Bethel CR, VanPelt J, Tierney DL, Page RC, Bonomo RA, Fast W, Crowder MW. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem 2018; 293:12606-12618. [PMID: 29909397 PMCID: PMC6093243 DOI: 10.1074/jbc.ra118.003835] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used β-lactamase inhibitors to counter the activity of metallo-β-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-β-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to ∼10 °C increased Tm ) and improved zinc affinity (up to ∼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of β-lactam antibiotics and zinc deprivation.
Collapse
Affiliation(s)
- Zishuo Cheng
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Pei W Thomas
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center of Infectious Disease, University of Texas, Austin, Texas 78712
| | - Lincheng Ju
- the Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Alexander Bergstrom
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Kelly Mason
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Delaney Clayton
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Callie Miller
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Christopher R Bethel
- the Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and
| | - Jamie VanPelt
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - David L Tierney
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| | - Richard C Page
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| | - Robert A Bonomo
- the Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and
- the Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics, and Bioinformatics, Case Western Reserve University (CWRU)-Cleveland Veterans Administration Medical Center (VAMC) Center of Antimicrobial Resistance and Epidemiology (CARES), Cleveland, Ohio 44106
| | - Walter Fast
- the Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center of Infectious Disease, University of Texas, Austin, Texas 78712,
| | - Michael W Crowder
- From the Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
| |
Collapse
|
5
|
Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG, Williams C, Poth R, Morris M, Lahey O, Nix JC, Tierney DL, Page RC, Crowder MW, Bonomo RA, Fast W. Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity. ACS Infect Dis 2017; 3:927-940. [PMID: 28965402 DOI: 10.1021/acsinfecdis.7b00128] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Use and misuse of antibiotics have driven the evolution of serine β-lactamases to better recognize new generations of β-lactam drugs, but the selective pressures driving evolution of metallo-β-lactamases are less clear. Here, we present evidence that New Delhi metallo-β-lactamase (NDM) is evolving to overcome the selective pressure of zinc(II) scarcity. Studies of NDM-1, NDM-4 (M154L), and NDM-12 (M154L, G222D) demonstrate that the point mutant M154L, contained in 50% of clinical NDM variants, selectively enhances resistance to the penam ampicillin at low zinc(II) concentrations relevant to infection sites. Each of the clinical variants is shown to be progressively more thermostable and to bind zinc(II) more tightly than NDM-1, but a selective enhancement of penam turnover at low zinc(II) concentrations indicates that most of the improvement derives from catalysis rather than stability. X-ray crystallography of NDM-4 and NDM-12, as well as bioinorganic spectroscopy of dizinc(II), zinc(II)/cobalt(II), and dicobalt(II) metalloforms probe the mechanism of enhanced resistance and reveal perturbations of the dinuclear metal cluster that underlie improved catalysis. These studies support the proposal that zinc(II) scarcity, rather than changes in antibiotic structure, is driving the evolution of new NDM variants in clinical settings.
Collapse
Affiliation(s)
- Alesha C. Stewart
- Division of Chemical
Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne
Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| | - Christopher R. Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alex Bergstrom
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Callie G. Miller
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Cameron Williams
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert Poth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Olivia Lahey
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert A. Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Departments
of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry,
Proteomics and Bioinformatics, and the CWRU-Cleveland VAMC Center
for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
| | - Walter Fast
- Division of Chemical
Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne
Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Song A, Cheng Y, Xie J, Banaei N, Rao J. Intramolecular substitution uncages fluorogenic probes for detection of metallo-carbapenemase-expressing bacteria. Chem Sci 2017; 8:7669-7674. [PMID: 29568429 PMCID: PMC5849144 DOI: 10.1039/c7sc02416a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
This work reports a novel caging strategy for designing fluorogenic probes to detect the activity of β-lactamases. The caging strategy uses a thiophenyl linker connected to a fluorophore caged by a good leaving group-dinitrophenyl. The uncaging proceeds in two steps through the sulfa-releasing and subsequent intramolecular substitution. The length of the linker has been examined and optimized to maximize the rate of intramolecular reaction and thus the rate of fluorescence activation. Finally based on this strategy, we prepared a green fluorogenic probe CAT-7 and validated its selectivity for detecting metallo-carbapenemases (VIM-27, IMP-1, NDM-1) in carbapenem-resistant Enterobacteriaceae (CRE) lysates.
Collapse
Affiliation(s)
- Aiguo Song
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Yunfeng Cheng
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Jinghang Xie
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| | - Niaz Banaei
- Department of Pathology , Clinical Microbiology Laboratory , Stanford Hospital and Clinics , Palo Alto , CA 94304 , USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford , Departments of Radiology and Chemistry , Stanford University , 1201 Welch Road , Stanford , CA 94305-5484 , USA .
| |
Collapse
|
7
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
8
|
Rotondo CM, Marrone L, Goodfellow VJ, Ghavami A, Labbé G, Spencer J, Dmitrienko GI, Siemann S. Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochim Biophys Acta Gen Subj 2015; 1850:2228-38. [DOI: 10.1016/j.bbagen.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|