1
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
2
|
Baraldo M, Zorzato S, Dondjang AHT, Geremia A, Nogara L, Dumitras AG, Canato M, Marcucci L, Nolte H, Blaauw B. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J Physiol 2022; 600:5055-5075. [PMID: 36255030 DOI: 10.1113/jp283686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Achille Homère Tchampda Dondjang
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ana Georgia Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Milán AF, Rincón OA, Arango LB, Reutovich AA, Smith GL, Giraldo MA, Bou-Abdallah F, Calderón JC. Calibration of mammalian skeletal muscle Ca 2+ transients recorded with the fast Ca 2+ dye Mag-Fluo-4. Biochim Biophys Acta Gen Subj 2021; 1865:129939. [PMID: 34082059 DOI: 10.1016/j.bbagen.2021.129939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mag-Fluo-4 is increasingly employed for studying Ca2+ signaling in skeletal muscle; however, the lack of information on the Ca2+-Mag-Fluo-4 reaction limits its wider usage. METHODS Fluorescence and isothermal titration calorimetry (ITC) experiments were performed to determine the binding stoichiometry (n) and thermodynamics (enthalpy (ΔH) and entropy (ΔS) changes), as well as the in vitro and in situ Kd of the Ca2+-Mag-Fluo-4 reaction. Rate constants (kon, koff), fluorescence maximum (Fmax), minimum (Fmin), and the dye compartmentalization were also estimated. Experiments in cells used enzymatically dissociated flexor digitorum brevis fibres of C57BL6, adult mice, loaded at room temperature for 8 min, with 6 μM Mag-Fluo-4, AM, and permeabilized with saponin or ionomycin. All measurements were done at 20 °C. RESULTS The in vitro fluorescence assays showed a binding stoichiometry of 0.5 for the Ca2+/Mag-Fluo-4 (n = 5) reaction. ITC results (n = 3) provided ΔH and ΔS values of 2.3 (0.7) kJ/mol and 97.8 (5.9) J/mol.K, respectively. The in situ Kd was 1.652 × 105μM2(n = 58 fibres, R2 = 0.99). With an Fmax of 150.9 (8.8) A.U. (n = 8), Fmin of 0.14 (0.1) A.U. (n = 10), and ΔF of Ca2+ transients of 8.4 (2.5) A.U. (n = 10), the sarcoplasmic [Ca2+]peak reached 22.5 (7.8) μM. Compartmentalized dye amounted to only 1.1 (0.7)% (n = 10). CONCLUSIONS Two Mag-Fluo-4 molecules coalesce around one Ca2+ ion, in an entropy-driven, very low in situ affinity reaction, making it suitable to reliably track the kinetics of rapid muscle Ca2+ transients. GENERAL SIGNIFICANCE Our results may be relevant to the quantitative study of Ca2+ kinetics in many other cell types.
Collapse
Affiliation(s)
- Andrés F Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Oscar A Rincón
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Leidy B Arango
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Aliaksandra A Reutovich
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Gideon L Smith
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Fadi Bou-Abdallah
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
4
|
Traoré M, Gentil C, Benedetto C, Hogrel JY, De la Grange P, Cadot B, Benkhelifa-Ziyyat S, Julien L, Lemaitre M, Ferry A, Piétri-Rouxel F, Falcone S. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci Transl Med 2019; 11:11/517/eaaw1131. [DOI: 10.1126/scitranslmed.aaw1131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 β subunit (CaVβ1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVβ1E. CaVβ1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVβ1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVβ1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVβ1E analogous and show a correlation between CaVβ1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVβ1E or GDF5 might be effective in reducing muscle mass loss in aging.
Collapse
Affiliation(s)
| | - Christel Gentil
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Chiara Benedetto
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Bruno Cadot
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Laura Julien
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | | | - Arnaud Ferry
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - France Piétri-Rouxel
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| | - Sestina Falcone
- Sorbonne Université, Centre de Recherche en Myologie, UM76, INSERM U974, Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
5
|
Role of mTOR in Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19072043. [PMID: 30011848 PMCID: PMC6073766 DOI: 10.3390/ijms19072043] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin, mTOR is the master regulator of a cell’s growth and metabolic state in response to nutrients, growth factors and many extracellular cues. Its dysregulation leads to a number of metabolic pathological conditions, including obesity and type 2 diabetes. Here, we review recent findings on the role of mTOR in major metabolic organs, such as adipose tissues, liver, muscle, pancreas and brain. And their potentials as the mTOR related pharmacological targets will be also discussed.
Collapse
|
6
|
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that senses and integrates environmental information into cellular regulation and homeostasis. Accumulating evidence has suggested a master role of mTOR signalling in many fundamental aspects of cell biology and organismal development. mTOR deregulation is implicated in a broad range of pathological conditions, including diabetes, cancer, neurodegenerative diseases, myopathies, inflammatory, infectious, and autoimmune conditions. Here, we review recent advances in our knowledge of mTOR signalling in mammalian physiology. We also discuss the impact of mTOR alteration in human diseases and how targeting mTOR function can treat human diseases.
Collapse
Affiliation(s)
- Yassine El Hiani
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| | - Emmanuel Eroume-A Egom
- b Jewish General Hospital and Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Xian-Ping Dong
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, Blanc S, Bertile F. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res 2017; 16:2623-2638. [PMID: 28590761 DOI: 10.1021/acs.jproteome.7b00201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.
Collapse
Affiliation(s)
- Georg Tascher
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.,Centre National d'Etudes Spatiales, CNES , 75039 Paris, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Pauline Maes
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Donal O'Gorman
- National Institute for Cellular Biotechnology and the School of Health and Human Performance, Dublin City University , Dublin 9, Ireland
| | | | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| |
Collapse
|
8
|
Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B, Frank S, Angelini C, Furling D, Rüegg MA, Sinnreich M, Castets P. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 2017; 127:549-563. [PMID: 28067669 DOI: 10.1172/jci89616] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.
Collapse
|
9
|
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 2016; 23:990-1003. [PMID: 27304501 PMCID: PMC4910876 DOI: 10.1016/j.cmet.2016.05.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Since the discovery that rapamycin, a small molecule inhibitor of the protein kinase mTOR (mechanistic target of rapamycin), can extend the lifespan of model organisms including mice, interest in understanding the physiological role and molecular targets of this pathway has surged. While mTOR was already well known as a regulator of growth and protein translation, it is now clear that mTOR functions as a central coordinator of organismal metabolism in response to both environmental and hormonal signals. This review discusses recent developments in our understanding of how mTOR signaling is regulated by nutrients and the role of the mTOR signaling pathway in key metabolic tissues. Finally, we discuss the molecular basis for the negative metabolic side effects associated with rapamycin treatment, which may serve as barriers to the adoption of rapamycin or similar compounds for the treatment of diseases of aging and metabolism.
Collapse
|
10
|
Sekulic-Jablanovic M, Ullrich ND, Goldblum D, Palmowski-Wolfe A, Zorzato F, Treves S. Functional characterization of orbicularis oculi and extraocular muscles. J Gen Physiol 2016; 147:395-406. [PMID: 27069119 PMCID: PMC4845688 DOI: 10.1085/jgp.201511542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/25/2016] [Indexed: 12/17/2022] Open
Abstract
Facial muscles are skeletal muscles that control facial expression. Sekulic-Jablanovic et al. characterize orbicularis oculi and extraocular muscles and find divergence in the expression of key molecules for muscle function between facial, extraocular, and quadriceps muscles. The orbicularis oculi are the sphincter muscles of the eyelids and are involved in modulating facial expression. They differ from both limb and extraocular muscles (EOMs) in their histology and biochemistry. Weakness of the orbicularis oculi muscles is a feature of neuromuscular disorders affecting the neuromuscular junction, and weakness of facial muscles and ptosis have also been described in patients with mutations in the ryanodine receptor gene. Here, we investigate human orbicularis oculi muscles and find that they are functionally more similar to quadriceps than to EOMs in terms of excitation–contraction coupling components. In particular, they do not express the cardiac isoform of the dihydropyridine receptor, which we find to be highly expressed in EOMs where it is likely responsible for the large depolarization-induced calcium influx. We further show that human orbicularis oculi and EOMs express high levels of utrophin and low levels of dystrophin, whereas quadriceps express dystrophin and low levels of utrophin. The results of this study highlight the notion that myotubes obtained by explanting satellite cells from different muscles are not functionally identical and retain the physiological characteristics of their muscle of origin. Furthermore, our results indicate that sparing of facial and EOMs in patients with Duchenne muscular dystrophy is the result of the higher levels of utrophin expression.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Goldblum
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Anja Palmowski-Wolfe
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| | - Susan Treves
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|