1
|
Tian Y, Jiang C, Pan Y, Guo Z, Wang W, Luo X, Cao Z, Zhang B, Yang J, Shi Y, Zhou N, He X. Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103553. [PMID: 33582278 DOI: 10.1016/j.ibmb.2021.103553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
CCHamides are newly identified insect neuropeptides, which are widely occurring in most insects. However, our knowledge about their signaling characteristics and physiological roles is still limited. Here, we cloned two full-length cDNAs encoding putative CCHamide receptors, Bombyx neuropeptide GPCR A14 (BNGR-A14) and -A15 (BNGR-A15), from the brain of B. mori larvae. Characterization of signaling indicated that Bombyx CCHamide-1 and CCHamide-2 are specific endogenous ligands for BNGR-A15 and BNGR-A14, respectively. Further functional assays combined with specific inhibitors demonstrated that upon activation by CCHamide-2, BNGR-A14 elicited significant increases in CRE-driven luciferase activity, intracellular Ca2+ mobilization and ERK1/2 phosphorylation in a Gq inhibitor-sensitive manner, while BNGR-A15 was activated by CCHamide-1, thus leading to intracellular accumulation of cAMP, Ca2+ mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Based on these findings, we designated the receptors BNGR-A15 and -A14 as Bommo-CCHaR-1 and -2, respectively. In addition, our results showed that CCHamides are considered to require intrachain disulfide bonds to activate their respective receptor in the physiological concentration range. Moreover, quantitative RT-PCR analysis revealed that CCHamide-1 is more likely to serve as a brain-gut peptide to regulate feeding behavior and growth through BNGR-A15, whereas the CCHamide-2 signaling system might play an important role in the control of multiple physiological processes. Our findings provide in-depth information on CCHamide-1 and -2-mediated signaling, facilitating further elucidation of their endocrinological roles in the regulation of fundamental physiological processes.
Collapse
Affiliation(s)
- Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chaohui Jiang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Pan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiqiang Guo
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xumei Luo
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
2
|
Ma Q, Cao Z, Yu Y, Yan L, Zhang W, Shi Y, Zhou N, Huang H. Bombyx neuropeptide G protein-coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm. J Biol Chem 2017; 292:20599-20612. [PMID: 29084843 DOI: 10.1074/jbc.m117.815191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/18/2017] [Indexed: 01/08/2023] Open
Abstract
The short neuropeptide F (sNPF) neuropeptides, closely related to vertebrate neuropeptide Y (NPY), have been suggested to exert pleiotropic effects on many physiological processes in insects. In the silkworm (Bombyx mori) two orphan G protein-coupled receptors, Bombyx neuropeptide G protein-coupled receptor (BNGR) A10 and A11, have been identified as cognate receptors for sNPFs, but other sNPF receptors and their signaling mechanisms in B. mori remain unknown. Here, we cloned the full-length cDNA of the orphan receptor BNGR-A7 from the brain of B. mori larvae and identified it as a receptor for Bombyx sNPFs. Further characterization of signaling and internalization indicated that BNGR-A7, -A10, and -A11 are activated by direct interaction with synthetic Bombyx sNPF-1 and -3 peptides. This activation inhibited forskolin or adipokinetic hormone-induced adenylyl cyclase activity and intracellular Ca2+ mobilization via a Gi/o-dependent pathway. Upon activation by sNPFs, BNGR-A7, -A10, and -A11 evoked ERK1/2 phosphorylation and underwent internalization. On the basis of these findings, we designated the receptors BNGR-A7, -A10, and -A11 as Bommo-sNPFR-1, -2, and -3, respectively. Moreover, the results obtained with quantitative RT-PCR analysis revealed that the three Bombyx sNPF receptor subtypes exhibit differential spatial and temporal expression patterns, suggesting possible roles of sNPF signaling in the regulation of a wide range of biological processes. Our findings provide the first in-depth information on sNPF signaling for further elucidation of the roles of the Bombyx sNPF/sNPFR system in the regulation of physiological activities.
Collapse
Affiliation(s)
- Qiang Ma
- From the Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and.,the Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zheng Cao
- From the Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Yena Yu
- the Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lili Yan
- From the Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Wenjuan Zhang
- the Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Haishan Huang
- the Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
3
|
Liao Y, Lu B, Ma Q, Wu G, Lai X, Zang J, Shi Y, Liu D, Han F, Zhou N. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues. J Biol Chem 2016; 291:7505-16. [PMID: 26865629 DOI: 10.1074/jbc.m115.704122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo.
Collapse
Affiliation(s)
- Yuan Liao
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Bin Lu
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Qiang Ma
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Gang Wu
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Xiangru Lai
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Jiashu Zang
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Dongxiang Liu
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences, and
| |
Collapse
|