1
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lv X, Zhang Q, Chen J, Cui S, Yang B. Use of proteomics to elucidate characteristics of Cronobacter sakazakii under mild heat stress. Int J Food Microbiol 2024; 425:110885. [PMID: 39178661 DOI: 10.1016/j.ijfoodmicro.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Cronobacter sakazakii is an opportunistic pathogen known for causing severe diseases. Mild heat treatment is commonly used in food processing, however, the pathogenic characteristics and underlying mechanisms of Cronobacter sakazakii strains remain poorly understood. In this study, we found that mild heat stress (MHS) at 52 °C can induce several deleterious effects in Cronobacter sakazakii, including damage to the cell wall, genomic DNA breakage, and misfolding of cytoplasmic proteins. These conditions lead to a decreased survival ability under acid, desiccation, and osmotic stress; a reduction in biofilm formation; and diminished motility. Notably, surviving C. sakazakii cells retain their pathogenicity, causing significant intestinal damage in newborn mice. This damage is characterized by epithelial sloughing and disruption of the intestinal structure. Tandem mass tag (TMT)-based proteomics identified 736 proteins with differential abundance across C. sakazakii strains subjected to mild heat stress, highlighting adaptations in biofilm formation, motility, and stress tolerance. Key regulatory changes were observed in phospholipid metabolism and protein synthesis, which underpin this complex stress response. This data illustrates a sophisticated balance between environmental adaptability and pathogenic potential. The metabolic and pathogenic responses of C. sakazakii to mild heat stress are closely linked to its phospholipid metabolism and the production of secretory proteins, both crucial for its virulence and reliant on membrane transport. This complex interplay emphasizes the need to understand these mechanisms to develop effective control strategies.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
3
|
Abstract
The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
4
|
Knoke LR, Zimmermann J, Lupilov N, Schneider JF, Celebi B, Morgan B, Leichert LI. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biol 2023; 64:102800. [PMID: 37413765 DOI: 10.1016/j.redox.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo "steady state" redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannis F Schneider
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Beyzanur Celebi
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
5
|
Wu D, Mehdipour AR, Finke F, Goojani HG, Groh RR, Grund TN, Reichhart TMB, Zimmermann R, Welsch S, Bald D, Shepherd M, Hummer G, Safarian S. Dissecting the conformational complexity and mechanism of a bacterial heme transporter. Nat Chem Biol 2023:10.1038/s41589-023-01314-5. [PMID: 37095238 PMCID: PMC10374445 DOI: 10.1038/s41589-023-01314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Iron-bound cyclic tetrapyrroles (hemes) are redox-active cofactors in bioenergetic enzymes. However, the mechanisms of heme transport and insertion into respiratory chain complexes remain unclear. Here, we used cellular, biochemical, structural and computational methods to characterize the structure and function of the heterodimeric bacterial ABC transporter CydDC. We provide multi-level evidence that CydDC is a heme transporter required for functional maturation of cytochrome bd, a pharmaceutically relevant drug target. Our systematic single-particle cryogenic-electron microscopy approach combined with atomistic molecular dynamics simulations provides detailed insight into the conformational landscape of CydDC during substrate binding and occlusion. Our simulations reveal that heme binds laterally from the membrane space to the transmembrane region of CydDC, enabled by a highly asymmetrical inward-facing CydDC conformation. During the binding process, heme propionates interact with positively charged residues on the surface and later in the substrate-binding pocket of the transporter, causing the heme orientation to rotate 180°.
Collapse
Affiliation(s)
- Di Wu
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
- Center for Molecular Modeling (CMM), Ghent University, Zwijnaarde, Belgium
| | - Franziska Finke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Hojjat G Goojani
- Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Faculty of Science, Vrije University of Amsterdam, Amsterdam, the Netherlands
| | - Roan R Groh
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Tamara N Grund
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Thomas M B Reichhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Rita Zimmermann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Dirk Bald
- Amsterdam Institute for Life and Environment (A-LIFE), AIMMS, Faculty of Science, Vrije University of Amsterdam, Amsterdam, the Netherlands
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Schara Safarian
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany.
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
7
|
Wang Z, Zhu S, Li C, Lyu L, Yu J, Wang D, Xu Z, Ni J, Gao B, Lu J, Yao YF. Gene essentiality profiling reveals a novel determinant of stresses preventing protein aggregation in Salmonella. Emerg Microbes Infect 2022; 11:1554-1571. [PMID: 35603550 PMCID: PMC9176671 DOI: 10.1080/22221751.2022.2081618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adaptation to various stresses during infection is important for Salmonella Typhimurium virulence, while the fitness determinants under infection-relevant stress conditions remain unknown. Here, we simulated conditions Salmonella encountered within the host or in the environment by 15 individual stresses as well as two model cell lines (epithelium and macrophage) to decipher the genes and pathways required for fitness. By high-resolution Tn-seq analysis, a total of 1242 genes were identified as essential for fitness under at least one stress condition. The comparative analysis of fitness determinants in 17 stress conditions indicated the essentiality of genes varied in different mimicking host niches. A total of 12 genes were identified as fitness determinants in all stress conditions, including recB, recC, and xseA (encode three exonuclease subunits necessary for DNA recombination repair) and a novel essential fitness gene yheM. YheM is a putative sulfurtransferase subunit that is responsible for tRNA modification, and our results showed that Salmonella lacking yheM accumulated more aggregates of endogenous protein than wild-type. Moreover, we established a scoring scheme for sRNA essentiality analysis and found STnc2080 of unknown function was essential for resistance to LL-37. In summary, we systematically dissected Salmonella gene essentiality profiling and demonstrated the general and specific adaptive requirements in infection-relevant niches. Our data not only provide valuable insights on how Salmonella responds to environmental stresses during infections but also highlight the potential clinical application of fitness determinants in vaccine development.
Collapse
Affiliation(s)
- Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Congcong Li
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhihong Xu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, People's Republic of China
| | - Jie Lu
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, People's Republic of China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Kairamkonda M, Sharma M, Gupta P, Poluri KM. Overexpression of bacteriophage T4 and T7 endolysins differentially regulate the metabolic fingerprint of host Escherichia coli. Int J Biol Macromol 2022; 221:212-223. [PMID: 36075302 DOI: 10.1016/j.ijbiomac.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/21/2022]
Abstract
Bioactive proteins are often overexpressed in different host systems for biotechnological/biomedical applications. Endolysins are natural bactericidal proteins that cleave the bacterial peptidoglycan membrane, and have the potential to be the next-generation enzybiotics. Therefore, the present study aims to elucidate the impact of two endolysins (T4L, T7L) overexpression on metabolic fingerprint of E. coli using NMR spectroscopy. The 1H NMR-based metabolomics analysis revealed global metabolite profiles of E. coli in response to endolysins. The study has identified nearly 75 metabolites, including organic acids, amino acids, sugars and nucleic acids. RNA Polymerase (RNAP) has been considered as reference protein for marking the specific alterations in metabolic pathways. The data suggested downregulation of central carbon metabolic pathway in both endolysins overexpression, but to a different extent. Also, the endolysin overexpression have highlighted the enhanced metabolic load and stress generation in the host cells, thus leading to the activation of osmoregulatory pathways. The overall changes in metabolic fingerprint of E. coli highlights the enhanced perturbations during the overexpression of T4L as compared to T7L. These untargeted metabolic studies shed light on the regulation of molecular pathways during the heterologous overexpression of these lytic enzymes that are lethal to the host.
Collapse
Affiliation(s)
- Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
9
|
Forte E, Nastasi MR, Borisov VB. Preparations of Terminal Oxidase Cytochrome bd-II Isolated from Escherichia coli Reveal Significant Hydrogen Peroxide Scavenging Activity. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:720-730. [PMID: 36171653 DOI: 10.1134/s0006297922080041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.
Collapse
Affiliation(s)
- Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Martina R Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185, Italy
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
11
|
Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res 2022; 55:17. [PMID: 35382884 PMCID: PMC8981825 DOI: 10.1186/s40659-022-00378-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
Collapse
Affiliation(s)
- Janine Kessi
- Until 2018 - Dept of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Raymond J. Turner
- Dept of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Davide Zannoni
- Dept of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Friedrich T, Wohlwend D, Borisov VB. Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. Int J Mol Sci 2022; 23:ijms23063166. [PMID: 35328590 PMCID: PMC8951039 DOI: 10.3390/ijms23063166] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome bd is a triheme copper-free terminal oxidase in membrane respiratory chains of prokaryotes. This unique molecular machine couples electron transfer from quinol to O2 with the generation of a proton motive force without proton pumping. Apart from energy conservation, the bd enzyme plays an additional key role in the microbial cell, being involved in the response to different environmental stressors. Cytochrome bd promotes virulence in a number of pathogenic species that makes it a suitable molecular drug target candidate. This review focuses on recent advances in understanding the structure of cytochrome bd and the development of its selective inhibitors.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Guo K, Feng X, Sun W, Han S, Wu S, Gao H. NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Commun Biol 2022; 5:87. [PMID: 35064202 PMCID: PMC8782879 DOI: 10.1038/s42003-022-03034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world. The DsbD protein is normally required for cytochrome c maturation (Ccm) in bacteria. With cytochrome c-rich Shewanella oneidensis as the research model, NapB, the small subunit of the nitrate reductase which is a cytochrome c per se, was found to suppress the Ccm defect resulting from DsbD loss under anaerobic conditions.
Collapse
|
14
|
Reducing the Periplasmic Glutathione Content Makes Escherichia coli Resistant to Trimethoprim and Other Antimicrobial Drugs. Microbiol Spectr 2021; 9:e0074321. [PMID: 34908461 PMCID: PMC8672908 DOI: 10.1128/spectrum.00743-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although glutathione (GSH) has been shown to influence the antimicrobial effects of many kinds of antibiotics, little is known about its role in relation to trimethoprim (TMP), a widely used antifolate. In this study, several genes related to glutathione metabolism were deleted in different Escherichia coli strains (i.e., O157:H7 and ATCC 25922), and their effects on susceptibility to TMP were tested. The results showed that deleting gshA, gshB, grxA, and cydD caused TMP resistance, and deleting cydD also caused resistance to other drugs. Meanwhile, deleting gshA, grxA, and cydD resulted in a significant decrease of the periplasmic glutathione content. Supplementing exogenous GSH or further deleting glutathione importer genes (gsiB and ggt) restored TMP sensitivity to ΔcydD. Subsequently, the results of quantitative-reverse transcription PCR experiments showed that expression levels of acrA, acrB, and tolC were significantly upregulated in both ΔgrxA and ΔcydD. Correspondingly, deleting cydD led to a decreased accumulation of TMP within bacterial cells, and further deleting acrA, acrB, or tolC restored TMP sensitivity to ΔcydD. Inactivation of CpxR and SoxS, two transcriptional factors that modulate the transcription of acrAB-tolC, restored TMP sensitivity to ΔcydD. Furthermore, mutations of gshA, gshB, grxA, cydC, and cydD are highly prevalent in E. coli clinical strains. Collectively, these data suggest that reducing the periplasmic glutathione content of E. coli leads to increased expression of acrAB-tolC with the involvement of CpxR and SoxS, ultimately causing drug resistance. To the best of our knowledge, this is the first report showing a linkage between periplasmic GSH and drug resistance in bacteria. IMPORTANCE After being used extensively for decades, trimethoprim still remains one of the key accessible antimicrobials recommended by the World Health Organization. A better understanding of the mechanisms of resistance would be beneficial for the future utilization of this drug. It has been shown that the AcrAB-TolC efflux pump is associated with trimethoprim resistance in E. coli clinical strains. In this study, we show that E. coli can sense the periplasmic glutathione content with the involvement of the CpxAR two-component system. As a result, reducing the periplasmic glutathione content leads to increased expression of acrA, acrB, and tolC via CpxR and SoxS, causing resistance to antimicrobials, including trimethoprim. Meanwhile, mutations in the genes responsible for periplasmic glutathione content maintenance are highly prevalent in E. coli clinical isolates, indicating a potential correlation of the periplasmic glutathione content and clinical antimicrobial resistance, which merits further investigation.
Collapse
|
15
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
16
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
17
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
19
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
20
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Jaswal K, Shrivastava M, Roy D, Agrawal S, Chaba R. Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genet 2020; 16:e1009081. [PMID: 33079953 PMCID: PMC7598926 DOI: 10.1371/journal.pgen.1009081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/30/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The envelope of gram-negative bacteria serves as the first line of defense against environmental insults. Therefore, its integrity is continuously monitored and maintained by several envelope stress response (ESR) systems. Due to its oxidizing environment, the envelope represents an important site for disulfide bond formation. In Escherichia coli, the periplasmic oxidoreductase, DsbA introduces disulfide bonds in substrate proteins and transfers electrons to the inner membrane oxidoreductase, DsbB. Under aerobic conditions, the reduced form of DsbB is re-oxidized by ubiquinone, an electron carrier in the electron transport chain (ETC). Given the critical role of ubiquinone in transferring electrons derived from the oxidation of reduced cofactors, we were intrigued whether metabolic conditions that generate a large number of reduced cofactors render ubiquinone unavailable for disulfide bond formation. To test this, here we investigated the influence of metabolism of long-chain fatty acid (LCFA), an energy-rich carbon source, on the redox state of the envelope. We show that LCFA degradation increases electron flow in the ETC. Further, whereas cells metabolizing LCFAs exhibit characteristics of insufficient disulfide bond formation, these hallmarks are averted in cells exogenously provided with ubiquinone. Importantly, the ESR pathways, Cpx and σE, are activated by envelope signals generated during LCFA metabolism. Our results argue that Cpx is the primary ESR that senses and maintains envelope redox homeostasis. Amongst the two ESRs, Cpx is induced to a greater extent by LCFAs and senses redox-dependent signal. Further, ubiquinone accumulation during LCFA metabolism is prevented in cells lacking Cpx response, suggesting that Cpx activation helps maintain redox homeostasis by increasing the oxidizing power for disulfide bond formation. Taken together, our results demonstrate an intricate relationship between cellular metabolism and disulfide bond formation dictated by ETC and ESR, and provide the basis for examining whether similar mechanisms control envelope redox status in other gram-negative bacteria.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Shashank Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
22
|
CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc Natl Acad Sci U S A 2020; 117:23565-23570. [PMID: 32900959 DOI: 10.1073/pnas.2007817117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.
Collapse
|
23
|
Genomic and physiological insights into the lifestyle of Bifidobacterium species from water kefir. Arch Microbiol 2020; 202:1627-1637. [PMID: 32266422 DOI: 10.1007/s00203-020-01870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Water kefir is a fermented beverage employing a natural microbial consortium, which harbours bifidobacteria, namely Bifidobacterium aquikefiri and Bifidobacterium tibiigranuli. However, little information is available on their metabolic properties or role in the consortium. In this study, we combined genomic and physiologic investigations to predict and characterize the properties of these organisms and their possible role in the consortium. When comparing the genomes of these psychrotrophic organisms with that of the three selected mesophilic probiotic Bifidobacterium strains, we could find 143 genes shared by the 3 known isolates of bifidobacteria from water kefir that do not occur in the probiotic strains. These include genes involved in acid and oxygen tolerance. In addition, their genomically predicted carbohydrate usage and transport suggest adaptation to sucrose and other plant-related sugars. Furthermore, they proved prototrophic for all amino acids in vitro, which enables them to cope with the strong amino acid limitation in water kefir.
Collapse
|
24
|
Anderson MT, Mitchell LA, Sintsova A, Rice KA, Mobley HLT. Sulfur Assimilation Alters Flagellar Function and Modulates the Gene Expression Landscape of Serratia marcescens. mSystems 2019; 4:e00285-19. [PMID: 31387930 PMCID: PMC6687942 DOI: 10.1128/msystems.00285-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022] Open
Abstract
Sulfur is an essential nutrient that contributes to cellular redox homeostasis, transcriptional regulation, and translation initiation when incorporated into different biomolecules. Transport and reduction of extracellular sulfate followed by cysteine biosynthesis is a major pathway of bacterial sulfur assimilation. For the opportunistic pathogen Serratia marcescens, function of the cysteine biosynthesis pathway is required for extracellular phospholipase activity and flagellum-mediated surface motility, but little else is known about the influence of sulfur assimilation on the physiology of this organism. In this work, it was determined that an S. marcescens cysteine auxotroph fails to differentiate into hyperflagellated and elongated swarmer cells and that cysteine, but not other organic sulfur molecules, restores swarming motility to these bacteria. The S. marcescens cysteine auxotroph further exhibits reduced transcription of phospholipase, hemolysin, and flagellin genes, each of which is subject to transcriptional control by the flagellar regulatory system. Based on these data and the central role of cysteine in sulfur assimilation, it was reasoned that environmental sulfur availability may contribute to the regulation of these functions in S. marcescens Indeed, bacteria that are starved for sulfate exhibit substantially reduced transcription of the genes for hemolysin, phospholipase, and the FlhD flagellar master regulator. A global transcriptomic analysis further defined a large set of S. marcescens genes that are responsive to extracellular sulfate availability, including genes that encode membrane transport, nutrient utilization, and metabolism functions. Finally, sulfate availability was demonstrated to alter S. marcescens cytolytic activity, suggesting that sulfate assimilation may impact the virulence of this organism.IMPORTANCE Serratia marcescens is a versatile bacterial species that inhabits diverse environmental niches and is capable of pathogenic interactions with host organisms ranging from insects to humans. This report demonstrates for the first time the extensive impacts that environmental sulfate availability and cysteine biosynthesis have on the transcriptome of S. marcescens The finding that greater than 1,000 S. marcescens genes are differentially expressed depending on sulfate availability suggests that sulfur abundance is a crucial factor that controls the physiology of this organism. Furthermore, the high relative expression levels for the putative virulence factors flagella, phospholipase, and hemolysin in the presence of sulfate suggests that a sulfur-rich host environment could contribute to the transcription of these genes during infection.
Collapse
Affiliation(s)
- Mark T Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lindsay A Mitchell
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Rice
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol 2019; 170:407-416. [PMID: 31279084 DOI: 10.1016/j.resmic.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
The CydDC family of ABC transporters export the low molecular weight thiols glutathione and cysteine to the periplasm of a variety of bacterial species. The CydDC complex has previously been shown to be important for disulfide folding, motility, respiration, and tolerance to nitric oxide and antibiotics. In addition, CydDC is thus far unique amongst ABC transporters in that it binds a haem cofactor that appears to modulate ATPase activity. CydDC has a diverse impact upon bacterial metabolism, growth, and virulence, and is of interest to those working on membrane transport mechanisms, redox biology, aerobic respiration, and stress sensing/tolerance during infection.
Collapse
Affiliation(s)
- Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Adam G Cozens
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom.
| |
Collapse
|
26
|
Miller CN, Panagos CG, Mosedale WRT, Kváč M, Howard MJ, Tsaousis AD. NMR metabolomics reveals effects of Cryptosporidium infections on host cell metabolome. Gut Pathog 2019; 11:13. [PMID: 30984292 PMCID: PMC6446323 DOI: 10.1186/s13099-019-0293-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cryptosporidium is an important gut microbe whose contributions towards infant and immunocompromise patient mortality rates are steadily increasing. Over the last decade, we have seen the development of various tools and methods for studying Cryptosporidium infection and its interactions with their hosts. One area that is sorely overlooked is the effect infection has on host metabolic processes. Results Using a 1H nuclear magnetic resonance approach to metabolomics, we have explored the nature of the mouse gut metabolome as well as providing the first insight into the metabolome of an infected cell line. Statistical analysis and predictive modelling demonstrated new understandings of the effects of a Cryptosporidium infection, while verifying the presence of known metabolic changes. Of note is the potential contribution of host derived taurine to the diarrhoeal aspects of the disease previously attributed to a solely parasite-based alteration of the gut environment, in addition to other metabolites involved with host cell catabolism. Conclusion This approach will spearhead our understanding of the Cryptosporidium-host metabolic exchange and provide novel targets for tackling this deadly parasite.
Collapse
Affiliation(s)
- Christopher N Miller
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Charalampos G Panagos
- 2Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, UK.,5Present Address: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - William R T Mosedale
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Martin Kváč
- 3Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic.,4Faculty of Agriculture, University of South Bohemia in České Budějovice, Ceske Budejovice, Czech Republic
| | - Mark J Howard
- 2Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, UK.,6Present Address: School of Chemistry, University of Leeds, Leeds, LS2 9JT UK
| | - Anastasios D Tsaousis
- 1Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
27
|
Eng T, Demling P, Herbert RA, Chen Y, Benites V, Martin J, Lipzen A, Baidoo EEK, Blank LM, Petzold CJ, Mukhopadhyay A. Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC. Microb Cell Fact 2018; 17:159. [PMID: 30296937 PMCID: PMC6174563 DOI: 10.1186/s12934-018-1006-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Microbial production of chemicals from renewable carbon sources enables a sustainable route to many bioproducts. Sugar streams, such as those derived from biomass pretreated with ionic liquids (IL), provide efficiently derived and cost-competitive starting materials. A limitation to this approach is that residual ILs in the pretreated sugar source can be inhibitory to microbial growth and impair expression of the desired biosynthetic pathway. RESULTS We utilized laboratory evolution to select Escherichia coli strains capable of robust growth in the presence of the IL, 1-ethyl-3-methyl-imidizolium acetate ([EMIM]OAc). Whole genome sequencing of the evolved strain identified a point mutation in an essential gene, cydC, which confers tolerance to two different classes of ILs at concentrations that are otherwise growth inhibitory. This mutation, cydC-D86G, fully restores the specific production of the bio-jet fuel candidate D-limonene, as well as the biogasoline and platform chemical isopentenol, in growth medium containing ILs. Similar amino acids at this position in cydC, such as cydC-D86V, also confer tolerance to [EMIM]OAc. We show that this [EMIM]OAc tolerance phenotype of cydC-D86G strains is independent of its wild-type function in activating the cytochrome bd-I respiratory complex. Using shotgun proteomics, we characterized the underlying differential cellular responses altered in this mutant. While wild-type E. coli cannot produce detectable amounts of either product in the presence of ILs at levels expected to be residual in sugars from pretreated biomass, the engineered cydC-D86G strains produce over 200 mg/L D-limonene and 350 mg/L isopentenol, which are among the highest reported titers in the presence of [EMIM]OAc. CONCLUSIONS The optimized strains in this study produce high titers of two candidate biofuels and bioproducts under IL stress. Both sets of production strains surpass production titers from other IL tolerant mutants in the literature. Our application of laboratory evolution identified a gain of function mutation in an essential gene, which is unusual in comparison to other published IL tolerant mutants.
Collapse
Affiliation(s)
- Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Philipp Demling
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Robin A. Herbert
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Veronica Benites
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Joel Martin
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598 USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, 94598 USA
| | - Edward E. K. Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074 Aachen, Germany
| | - Christopher J. Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
28
|
Yamamoto N, Wakai T. Genome-wide motif predictions of BCARR-box in the amino-acid repressed genes of Lactobacillus helveticus CM4. BMC Microbiol 2017; 17:224. [PMID: 29197337 PMCID: PMC5712122 DOI: 10.1186/s12866-017-1125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A BCARR (branched-chain amino acid responsive repressor) identified in proteolytic gene expressions in Lactobacillus helveticus is considered to negatively control transcriptions by binding to operator sites at the promoter regions in the presence of BCAAs. However, the distributions and regulatory potential of the BCARR in all genes repressed by BCAAs in CM4 remains unclear. RESULTS A genome-wide search for the BCARR-box was conducted to clarify the contribution of BCARR in the regulation of amino acid metabolism in L. helveticus CM4. Among all 2174 genes of CM4, 390 genes repressed by amino acids were selected for the search of the BCARR-box. The annotated 33 genes among the 67 predicted BCARR-boxes were mainly linked to amino acid metabolism. The BCARR-boxes were mainly located adjacent to the -35 sequence of the promoter; however, the repressive effects in different locations were similar. Notably, the consensus BCARR-box motif, 5'-A1A2A3A4A5W6N7N8N9W10T11T12W13T14T15-3', observed in highly repressed genes, revealed more frequent A-T base pairing and a lower free energy than that in lowly repressed genes. A MEME analysis also supported the lower frequency of T at positions 12, 14, 13 and 15 in the BCARR-box sequence of the lowly repressed gene group. These results reveal that genes with a more stable palindromic structure might be preferable targets for BCARR binding and result in higher repressions in the target gene expressions. CONCLUSIONS Our genome-wide search revealed the involvement of the proteolytic system, transporter system and some transcriptional regulator systems in BCARR-box regulation in L. helveticus CM4.
Collapse
Affiliation(s)
- Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-J3-8, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
- Research and Development Center, Asahi Group Holdings Ltd., 11-10, 5-chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206 Japan
| | - Taketo Wakai
- Core Technology laboratories, Asahi Group Holdings Ltd., 11-10, 5-chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206 Japan
| |
Collapse
|
29
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
30
|
Nagy YI, Hussein MMM, Ragab YM, Attia AS. Isogenic mutations in the Moraxella catarrhalis CydDC system display pleiotropic phenotypes and reveal the role of a palindrome sequence in its transcriptional regulation. Microbiol Res 2017. [PMID: 28647125 DOI: 10.1016/j.micres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is becoming an important human respiratory tract pathogen affecting significant proportions from the population. However, still little is known about its physiology and molecular regulation. To this end, the CydDC, which is a heterodimeric ATP binding cassette transporter that has been shown to contribute to the maintenance of the redox homeostasis across the periplasm in other Gram-negative bacteria, is studied here. Amino acids multiple sequence alignments indicated that M. catarrhalis CydC is different from the CydC proteins of the bacterial species in which this system has been previously studied. These findings prompted further interest in studying this system in M. catarrhalis. Isogenic mutant in the CydDC system showed suppression in growth rate, hypersensitivity to oxidative and reductive stress and increased accumulation of intracellular cysteine levels. In addition, the growth of cydC- mutant exhibited hypersensitivity to exogenous cysteine; however, it did not display a significant difference from its wild-type counterpart in the murine pulmonary clearance model. Moreover, a palindrome was detected 94bp upstream of the cydD ORF suggesting it might act as a potential regulatory element. Real-time reverse transcription-PCR analysis showed that deletion/change in the palindrome resulted into alterations in the transcription levels of cydC. A better understanding of such system and its regulation helps in developing better ways to combat M. catarrhalis infections.
Collapse
Affiliation(s)
- Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Manal M M Hussein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
31
|
Yimer SA, Birhanu AG, Kalayou S, Riaz T, Zegeye ED, Beyene GT, Holm-Hansen C, Norheim G, Abebe M, Aseffa A, Tønjum T. Comparative Proteomic Analysis of Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains Reveals Differentially Abundant Proteins Linked to Slow Growth and Virulence. Front Microbiol 2017; 8:795. [PMID: 28536560 PMCID: PMC5423352 DOI: 10.3389/fmicb.2017.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/18/2017] [Indexed: 12/22/2022] Open
Abstract
In order to decipher the nature of the slowly growing Mycobacterium tuberculosis (M.tuberculosis) lineage 7, the differentially abundant proteins in strains of M. tuberculosis lineage 7 and lineage 4 were defined. Comparative proteomic analysis by mass spectrometry was employed to identify, quantitate and compare the protein profiles of strains from the two M. tuberculosis lineages. Label-free peptide quantification of whole cells from M. tuberculosis lineage 7 and 4 yielded the identification of 2825 and 2541 proteins, respectively. A combined total of 2867 protein groups covering 71% of the predicted M. tuberculosis proteome were identified. The abundance of 125 proteins in M. tuberculosis lineage 7 and 4 strains was significantly altered. Notably, the analysis showed that a number of M. tuberculosis proteins involved in growth and virulence were less abundant in lineage 7 strains compared to lineage 4. Five ABC transporter proteins, three phosphate binding proteins essential for inorganic phosphate uptake, and six components of the type 7 secretion system ESX-3 involved in iron acquisition were less abundant in M. tuberculosis lineage 7. This proteogenomic analysis provided an insight into the lineage 7-specific protein profile which may provide clues to understanding the differential properties of lineage 7 strains in terms of slow growth, survival fitness, and pathogenesis.
Collapse
Affiliation(s)
- Solomon A Yimer
- Department of Microbiology, Oslo University HospitalOslo, Norway.,Department of Microbiology, University of OsloOslo, Norway
| | - Alemayehu G Birhanu
- Department of Microbiology, University of OsloOslo, Norway.,Department of Medical Biotechnology, Institute of Biotechnology, Addis Ababa UniversityAddis Ababa, Ethiopia
| | - Shewit Kalayou
- Department of Microbiology, Oslo University HospitalOslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of OsloOslo, Norway
| | - Ephrem D Zegeye
- Centre for Applied Biotechnology, Uni Research EnvironmentBergen, Norway
| | | | - Carol Holm-Hansen
- Infection Control and Environmental Health, Norwegian Institute of Public HealthOslo, Norway
| | - Gunnstein Norheim
- Infection Control and Environmental Health, Norwegian Institute of Public HealthOslo, Norway
| | - Markos Abebe
- Department of Research and Innovation, Armauer Hansen Research InstituteAddis Ababa, Ethiopia
| | - Abraham Aseffa
- Department of Research and Innovation, Armauer Hansen Research InstituteAddis Ababa, Ethiopia
| | - Tone Tønjum
- Department of Microbiology, Oslo University HospitalOslo, Norway.,Department of Microbiology, University of OsloOslo, Norway
| |
Collapse
|
32
|
Shepherd M, Achard MES, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep 2016; 6:35285. [PMID: 27767067 PMCID: PMC5073308 DOI: 10.1038/srep35285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.
Collapse
Affiliation(s)
- Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Maud E S Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adi Idris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cláudia A Ribeiro
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Louise V Holyoake
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Dimitrios Ladakis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|