1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Di Carlo D, Falasca F, Mazzuti L, Guerrizio G, Migliara G, Santori M, Lazzaro A, Mezzaroma I, D'Ettorre G, Fimiani C, Iaiani G, Antonelli G, Turriziani O. MicroRNA Expression Levels in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus Type 1 Positive Individuals and Relationship with Different Levels of Viral Suppression. AIDS Res Hum Retroviruses 2024; 40:321-329. [PMID: 37523231 DOI: 10.1089/aid.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The persistence of low human immunodeficiency virus type 1 (HIV-1) replication in individuals undergoing antiretroviral therapy (ART) still threatens their health. Previous findings have shown that microRNAs (miRNAs) could interfere with several steps of the viral life cycle. Herein, we set out to investigate the expression of miR-150, miR-223, miR-382, miR-324-5p, miR-33a-5p, miR-34a, and miR-132 in the whole peripheral blood mononuclear cell (PBMC) population from people living with HIV-1 showing different levels of viral suppression. Levels of PBMC-associated miRNAs were analyzed in 30 individuals with undetectable viremia (target not detected) and 30 individuals with detectable low-level viremia (1-200 copies/mL). In addition, 30 samples from treatment-naive (NAIVE) individuals were investigated. Results were compared to a control group of 28 HIV-negative donors. All miRNAs analyzed were strongly downregulated in the NAIVE population, either compared to the treated group or to controls. Stratification of ART-treated donors according to the therapeutic regimen showed the downregulation of miR-33a-5p in subjects treated with non-nucleoside reverse transcriptase inhibitors compared with those treated with protease inhibitors. Collectively, the present study shows that uncontrolled viral replication leads to profound miRNA deregulation while treated individuals, irrespective of the degree of viral suppression, and even the types of antiviral drugs seem to be specifically associated with miRNA expression profiles. These evidences suggest that virological suppression could be favored by miRNA modulation.
Collapse
Affiliation(s)
- Daniele Di Carlo
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Pasteur Laboratories, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Transfusion Medicine Unit, "F. Veneziale" Hospital, Isernia, Italy
| | - Laura Mazzuti
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Giuliana Guerrizio
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marta Santori
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Caterina Fimiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Giancarlo Iaiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
3
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Yao J, Zhu Y, Zhang G, Zhou X, Shang H, Li L, Xu T. Action mechanisms and characteristics of miRNAs to regulate virus replication. Virology 2024; 590:109966. [PMID: 38100983 DOI: 10.1016/j.virol.2023.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
MicroRNAs (miRNAs) have the potential to be explored as antiviral products. It is known that miRNAs have different kinds of target mRNAs and different target sites in mRNAs, and that the action-modes of miRNAs at different target sites may be different. But there is no evidence demonstrating the significance of the differences for the regulation of viruses by miRNAs, which might be crucial for the exploration of miRNA-based antiviral products. Here the experimental studies about the antiviral effects of miRNAs, with validated target mRNAs and target sites in the mRNAs, were systematically collected, based on which the mechanisms whereby miRNAs regulated virus replication were systematically reviewed. And miRNAs' down-regulation rates on target mRNAs and antiviral rates were compared among the miRNAs with different target sites, to analyze the characteristics of action-modes of miRNAs at different target sites during virus replication.
Collapse
Affiliation(s)
- Jia Yao
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Genrong Zhang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Xianfeng Zhou
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Hongcai Shang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China; Shang Hongcai, Key Laboratory of Chinese Internal Medicine of MOE and Beijing University of Chinese Medicine, 11 Eastern Section of the North Third Ring Road, Chaoyang District, Beijing, 100029, PR China.
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| |
Collapse
|
6
|
Rashid F, Zaongo SD, Song F, Chen Y. The diverse roles of miRNAs in HIV pathogenesis: Current understanding and future perspectives. Front Immunol 2023; 13:1091543. [PMID: 36685589 PMCID: PMC9849909 DOI: 10.3389/fimmu.2022.1091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Despite noteworthy progress made in the management and treatment of HIV/AIDS-related disease, including the introduction of the now almost ubiquitous HAART, there remains much to understand with respect to HIV infection. Although some roles that miRNAs play in some diseases have become more obvious of late, the roles of miRNAs in the context of HIV pathogenesis have not, as yet, been elucidated, and require further investigations. miRNAs can either be beneficial or harmful to the host, depending upon the genes they target. Some miRNAs target the 3' UTR of viral mRNAs to accomplish restriction of viral infection. However, upon HIV-1 infection, there are several dysregulated host miRNAs which target their respective host factors to either facilitate or abrogate viral infection. In this review, we discuss the miRNAs which play roles in various aspects of viral pathogenesis. We describe in detail the various mechanisms thereby miRNAs either directly or indirectly regulate HIV-1 infection. Moreover, the predictive roles of miRNAs in various aspects of the HIV viral life cycle are also discussed. Contemporary antiretroviral therapeutic drugs have received much attention recently, due to their success in the treatment of HIV/AIDS; therefore, miRNA involvement in various aspects of antiretroviral therapeutics are also elaborated upon herein. The therapeutic potential of miRNAs are discussed, and we also propose herein that the therapeutic potential of one specific miRNA, miR-34a, warrants further exploration, as this miRNA is known to target three host proteins to promote HIV-1 pathogenesis. Finally, future perspectives and some controversy around the expression of miRNAs by HIV-1 are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,*Correspondence: Yaokai Chen,
| |
Collapse
|
7
|
Cuesta-Sancho S, Márquez-Ruiz D, Illanes-Álvarez F, Campaña-Gómez I, Martín-Aspas A, Trujillo-Soto MT, Romero A, Galán F, Rodríguez-Iglesias M, Márquez-Coello M, Girón-González JA. Expression profile of microRNAs related with viral infectivity, inflammatory response, and immune activation in people living with HIV. Front Microbiol 2023; 14:1136718. [PMID: 36937285 PMCID: PMC10017538 DOI: 10.3389/fmicb.2023.1136718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Objective To evaluate the serum expression of microRNAs (miRNAs) with ability to modulate the human immunodeficiency (HIV) replication or inflammatory status in people living with HIV (PLWH). Methods Forty healthy controls and two groups of PLWH were evaluated: (a) Group 1 (n = 30), patients with detectable viral load at inclusion, analyzed before receiving antiretroviral therapy (ART) and 12 months after initiating it; (b) Group 2 (n = 55), PLWH with prolonged undetectable viral load. Intestinal barrier disruption (I-FABP) and bacterial translocation (16S rDNA) markers, inflammatory markers such as interleukin (IL)-6 and sCD163, immune activation and expression of specific miRNAs were evaluated. Results Serum concentrations of I-FABP, 16S rDNA, IL-6, sCD163 and activated T lymphocytes were increased in PLWH. Serum miR-34a was overexpressed at inclusion and remained elevated after ART. The expression of the remaining miRNAs that modulate HIV infectivity (miR-7, mir-29a, miR-150, and miR-223) was similar in PLWH and controls. Related to miRNAs implicated in inflammation (miR-21, miR-155, and miR-210), significant overexpression were observed in miR-21 and miR-210 levels in untreated PLWH, but levels were restored in those patients treated for a long period. Conclusion A sustained overexpression of miR-34a was detected even after prolonged HIV controlled replication. miR-21 and miR-210 can be considered new markers of inflammation with high sensitivity to its modifications.
Collapse
Affiliation(s)
- Sara Cuesta-Sancho
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Denisse Márquez-Ruiz
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Francisco Illanes-Álvarez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Irene Campaña-Gómez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Andrés Martín-Aspas
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - María Teresa Trujillo-Soto
- Servicio de Microbiología, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Alberto Romero
- Unidad de Enfermedades Infecciosas, Facultad de Medicina, Hospital Universitario Puerto Real, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Fátima Galán
- Servicio de Microbiología, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Mercedes Márquez-Coello
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - José-Antonio Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Facultad de Medicina, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
- *Correspondence: José-Antonio Girón-González,
| |
Collapse
|
8
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Olsson O, Tesfaye F, Søkilde R, Mazurek J, Abebe M, Yeba H, Aseffa A, Skogmar S, Balcha TT, Rovira C, Björkman P, Jansson M. Expression of MicroRNAs Is Dysregulated by HIV While Mycobacterium tuberculosis Drives Alterations of Small Nucleolar RNAs in HIV Positive Adults With Active Tuberculosis. Front Microbiol 2022; 12:808250. [PMID: 35295678 PMCID: PMC8920554 DOI: 10.3389/fmicb.2021.808250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
HIV infection affects the course of tuberculosis (TB), and HIV and Mycobacterium tuberculosis (Mtb) synergize in disease progression through complex immunological interplay. To gain further understanding of these mechanisms, we compared the microRNA (miRNA) and small nucleolar RNA (snoRNA) expression patterns in whole blood of individuals with active TB, with and without HIV coinfection (HIV+/TB+ and HIV-/TB+), and HIV and TB-negative individuals (HIV-/TB-). We found that 218 miRNAs were differentially expressed between HIV+/TB+ and HIV-/TB+, while no statistically significant difference in snoRNA expression was observed between these groups. In contrast, both miRNA (n = 179) and snoRNA (n = 103) expression patterns were significantly altered in HIV+/TB+ individuals compared to those of the HIV-/TB- controls. Of note, 26 of these snoRNAs were also significantly altered between the HIV-/TB+ and HIV-/TB- groups. Normalization toward the miRNA and snoRNA expression patterns of the HIV-/TB- control group was noted during anti-TB and antiretroviral treatment in HIV+/TB+ participants. In summary, these results show that HIV coinfection influences miRNA expression in active TB. In contrast, snoRNA expression patterns differ between individuals with and without active TB, independently of HIV coinfection status. Moreover, in coinfected individuals, therapy-induced control of HIV replication and clearance of Mtb appears to normalize the expression of some small non-coding RNA (sncRNA). These findings suggest that dysregulation of miRNA is a mechanism by which HIV may modify immunity against TB, while active TB alters snoRNA expression. Improved understanding of how regulation of sncRNA expression influences the disease course in coinfected individuals may have implications for diagnostics, risk stratification, and host-directed therapy. Here, we propose a novel mechanism by which HIV alters the immune response to TB.
Collapse
Affiliation(s)
- Oskar Olsson
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| | - Fregenet Tesfaye
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rolf Søkilde
- Breastca-Genetics, Cancer and Non-coding RNA, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Jolanta Mazurek
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Habtamu Yeba
- Adama Public Health Research and Referral Center, Adama, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Sten Skogmar
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| | - Taye Tolera Balcha
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Carlos Rovira
- Breastca-Genetics, Cancer and Non-coding RNA, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Per Björkman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Malmö, Sweden
| | - Marianne Jansson
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Consuegra I, Gasco S, Serramía MJ, Jiménez JL, Mellado MJ, Muñoz-Fernández MÁ. Establishment of a miRNA profile in paediatric HIV-1 patients and its potential as a biomarker for effectiveness of the combined antiretroviral therapy. Sci Rep 2021; 11:23477. [PMID: 34873266 PMCID: PMC8648729 DOI: 10.1038/s41598-021-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
miRNAs have been extensively studied in pathological conditions, including viral infections, such as those provoked by HIV-1. Several cellular and circulating miRNAs are altered during HIV-1 infection, with either beneficial effects on host defenses or enhanced virus infectivity. Blood samples were collected in sterile EDTA tubes and plasma was separated and stored, as were PBMCs. RNA was isolated and reverse-transcribed. Finally, the miRNA gene expression profile was assessed using TaqMan Array Human microRNA Card A v2.0. A comprehensive statistical analysis was performed on the results obtained. This is the first study on miRNAs in HIV-1 paediatric patients, and a miRNA profile differentiating patients starting combination antiretroviral therapy (cART) at different times after HIV-1 diagnosis was established. Thirty-four miRNAs were observed to have different expression levels between the control group and the cART group. The data indicates the need to start cART as soon as possible after the establishment of HIV-1 infection to assure the best outcome possible. Finally, the selected 34 miRNAs may be used as biomarkers for prognosis and assessing therapy effectiveness. However, more research must be conducted to establish adequate quantitative correlations.
Collapse
Affiliation(s)
- Irene Consuegra
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain
| | - Samanta Gasco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Jesús Serramía
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Laboratorio InmunoBiología Molecular, Head Immunology Section, (Hospital General Universitario Gregorio Marañón), C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | - José Luis Jiménez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV HGM BioBank, Madrid, Spain.,Plataforma-Laboratorio (IiSGM), Madrid, Spain
| | - Maria Jose Mellado
- General Pediatrics, Infectious and Tropical Diseases Department Hospital, Universitario La Paz, Madrid, Spain.,IdiPAZ, Madrid, Spain.,Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. .,Spanish HIV HGM BioBank, Madrid, Spain. .,Laboratorio InmunoBiología Molecular, Head Immunology Section, (Hospital General Universitario Gregorio Marañón), C/Dr. Esquerdo 46, 28007, Madrid, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
11
|
Shen F, Liu Y, Wang L, Chai X, Yang J, Feng Q, Li X. Identification of HIV-1-specific cascaded microRNA-mRNA regulatory relationships by parallel mRNA and microRNA expression profiling with AIDS patients after antiviral treatment. Medicine (Baltimore) 2021; 100:e27428. [PMID: 34871208 PMCID: PMC8568437 DOI: 10.1097/md.0000000000027428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The pathogenesis of human immunodeficiency virus 1 (HIV-1) infection is so complex that have not been clearly defined, despite intensive efforts have been made by many researchers. MicroRNA (miRNA) as regulation factor in various human diseases may influence the course of HIV-1 infection by targeting mRNAs. Thus, studies combining transcription of posttranscriptional miRNA regulation are required. METHODS With the purpose of identifying cascaded miRNA-mRNA regulatory relationships related to HIV infection in gene level, the parallel miRNA, and mRNA expression profiles were analyzed to select differential expressed miRNAs and mRNAs. Then, miRNA-mRNA interactions were predicted using 3 data sources and Pearson correlation coefficient was calculated based on the gene expression level for accuracy improvement. Furthermore, the calculation of the regulatory impact factors was conducted to reveal crucial regulators in HIV-1 infection. To give further insight into these transcription factor (TF) regulators, the differentially co-expression analysis was conducted to identify differentially co-expressed links and differential co-expressed genes and the co-expression gene modules were identified using a threshold-based hierarchical clustering method, then modules were combined into a miRNA-TF-mRNA network. RESULTS A total of 69,126 differentially co-expressed links and 626 differential co-expressed genes were identified. Functional enrichment analysis indicated that these co-expressed genes were significantly involved in immune response and apoptosis. Moreover, according to regulatory impact factors, 5 most influential TFs and miRNA in HIV-1 infection were identified and miRNA-TF-mRNA regulatory networks were built during the computing process. CONCLUSIONS In our study, a set of integrated methods was generated to identify important regulators and miRNA-TF-mRNA interactions. Parallel profiling analysis of the miRNAs and mRNAs expression of HIV/acquired immunodeficiency syndrome (AIDS) patients after antiretroviral therapy indicated that some regulators have wide impact on gene regulation and that these regulatory elements may bear significant implications on the underlying molecular mechanism and pathogenesis of AIDS occurrence.
Collapse
Affiliation(s)
- Fangyuan Shen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yefang Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- No. 3 Affiliated Hospital of Chengdu University of TCM (West District), Chengdu Pidu District Hospital of TCM, China
| | - Lanchun Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoqiang Chai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quansheng Feng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Abstract
Inflammatory and infectious diseases are among the main causes of morbidity and mortality worldwide. Inflammation is central to maintenance of organismal homeostasis upon infection, tissue damage, and malignancy. It occurs transiently in response to diverse stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic), and in some cases may manifest itself in chronic diseases. To limit the potentially deleterious effects of acute or chronic inflammatory responses, complex transcriptional and posttranscriptional regulatory networks have evolved, often involving nonprotein-coding RNAs (ncRNA). MicroRNAs (miRNAs) are a class of posttranscriptional regulators that control mRNA translation and stability. Long ncRNAs (lncRNAs) are a very diverse group of transcripts >200 nt, functioning among others as scaffolds or decoys both in the nucleus and the cytoplasm. By now, it is well established that miRNAs and lncRNAs are implicated in all major cellular processes including control of cell death, proliferation, or metabolism. Extensive research over the last years furthermore revealed a fundamental role of ncRNAs in pathogen recognition and inflammatory responses. This chapter reviews and summarizes the current knowledge on regulatory ncRNA networks in infection and inflammation.
Collapse
Affiliation(s)
- Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Christina Stielow
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
14
|
|
15
|
Amaral AJ, Andrade J, Foxall RB, Matoso P, Matos AM, Soares RS, Rocha C, Ramos CG, Tendeiro R, Serra-Caetano A, Guerra-Assunção JA, Santa-Marta M, Gonçalves J, Gama-Carvalho M, Sousa AE. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication. EMBO J 2017; 36:346-360. [PMID: 27993935 PMCID: PMC5286376 DOI: 10.15252/embj.201694335] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023] Open
Abstract
Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response.
Collapse
Affiliation(s)
- Andreia J Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Jorge Andrade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Matos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rui S Soares
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cheila Rocha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christian G Ramos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rita Tendeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Serra-Caetano
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José A Guerra-Assunção
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, UK
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 2016; 23:74. [PMID: 27784307 PMCID: PMC5081962 DOI: 10.1186/s12929-016-0292-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| |
Collapse
|
17
|
Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold. Protein J 2016; 35:340-345. [DOI: 10.1007/s10930-016-9677-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques. Viruses 2016; 8:v8050121. [PMID: 27144577 PMCID: PMC4885076 DOI: 10.3390/v8050121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.
Collapse
|