1
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
2
|
Scantland S, Grenon JP, Desrochers MH, Sirard MA, Khandjian EW, Robert C. Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos. BMC DEVELOPMENTAL BIOLOGY 2011; 11:8. [PMID: 21324132 PMCID: PMC3055227 DOI: 10.1186/1471-213x-11-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/15/2011] [Indexed: 12/19/2022]
Abstract
Background Although the transcriptome of minute quantities of cells can be profiled using nucleic acid amplification techniques, it remains difficult to distinguish between active and stored messenger RNA. Transcript storage occurs at specific stages of gametogenesis and is particularly important in oogenesis as stored maternal mRNA is used to sustain de novo protein synthesis during the early developmental stages until the embryonic genome gets activated. In many cases, stored mRNA can be several times more abundant than mRNA ready for translation. In order to identify active mRNA in bovine oocytes, we sought to develop a method of isolating very small amounts of polyribosome mRNA. Results The proposed method is based on mixing the extracted oocyte cytoplasm with a preparation of polyribosomes obtained from a non-homologous source (Drosophila) and using sucrose density gradient ultracentrifugation to separate the polyribosomes. It involves cross-linking the non-homologous polyribosomes and neutralizing the cross-linking agent. Using this method, we show that certain stages of oocyte maturation coincide with changes in the abundance of polyribosomal mRNA but not total RNA or poly(A). We also show that the abundance of selected sequences matched changes in the corresponding protein levels. Conclusions We report here the successful use of a method to profile mRNA present in the polyribosomal fraction obtained from as little as 75 mammalian oocytes. Polyribosomal mRNA fractionation thus provides a new tool for studying gametogenesis and early development with better representation of the underlying physiological status.
Collapse
Affiliation(s)
- Sara Scantland
- Laboratoire de génomique fonctionnelle du développement embryonnaire, Centre de recherche en biologie de la reproduction, Pavillon Comtois, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, G1V 0A6, Canada.
| | | | | | | | | | | |
Collapse
|
3
|
de Heus RB, Diegenbach PC. The use of texture analysis for the discrimination of Nissl substance in neurons. J Neurosci Methods 1992; 44:209-15. [PMID: 1282188 DOI: 10.1016/0165-0270(92)90012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structural changes induced by cordotomy in the Nissl substance of identifiable spinal motoneurons innervating the white musculature of the European eel were quantified with the use of texture features calculated from digitized images. Data were evaluated and the motoneurons classified by using multivariate analysis. The study shows that there are differences in the structural organization of the Nissl substance of motoneurons taken from control and cordotomized fishes. Distinction could only be made by using texture features, as visual examination of the motoneurons did not reveal any alteration of the studied cellular substance. Reorganization of the Nissl substance might be the result of a changed protein metabolism or a changed neuronal activity pattern consequent upon cordotomy. The method employs quick and simple techniques and could be useful in several other neurobiological studies.
Collapse
Affiliation(s)
- R B de Heus
- Department of Experimental Zoology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Sheng HZ, Kerlero de Rosbo N, Carnegie PR, Bernard CC. Developmental study of myelin basic protein variants in various regions of pig nervous system. J Neurochem 1989; 52:736-40. [PMID: 2465378 DOI: 10.1111/j.1471-4159.1989.tb02516.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A developmental study of myelin basic protein (MBP) variants in eight regions of pig nervous system (NS) was performed using a quantitative electroimmunoblotting procedure. Four major MBP forms with apparent molecular weights of 21.5K, 20.2K, 18.5K, and 17.3K were identified in both the CNS and the PNS and were detected as early as 22 days before birth. Quantification of the most abundant forms, the 21.5K and 18.5K MBPs, revealed characteristic profiles of accumulation of these two variants in different regions of the NS. The ratio of 21.5K:18.5K MBP varied with developmental time as well as with the various NS regions, peaking 20 days postnatally. The 17.3K MBP was observed from embryonic stages to adulthood, as were the 21.5K and 18.5K forms. In contrast, the 20.2K variant appeared most abundant from 10 days before to 22 days after birth and thereafter decreased in intensity so as to be no longer detectable in the brain of a 5-year-old pig. A similar pattern was also observed with an anti-MBP-reacting protein with an apparent molecular weight of 23K. Taken together, these results suggest that in the pig NS, the expression of MBP variants may be regulated both regionally and developmentally.
Collapse
Affiliation(s)
- H Z Sheng
- Department of Psychology, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
5
|
Chanderkar LP, Paik WK, Kim S. Studies on myelin-basic-protein methylation during mouse brain development. Biochem J 1986; 240:471-9. [PMID: 2434074 PMCID: PMC1147440 DOI: 10.1042/bj2400471] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and methylation in vivo of myelin basic protein (MBP) during the mouse brain development has been investigated. When mice ranging in age from 13 to 60 days were injected intracerebrally with L-[methyl-3H]methionine, the incorporation of radioactivity into MBP isolated from youngest brain was found to be the highest and declined progressively in mature brains. This pattern of radioactivity incorporation was inversely correlated with the total amount of MBP in the brains, suggesting a higher ratio of MBP methylation to synthesis in younger brain. To differentiate the relative rate of protein synthesis and methylation, animals were given intracerebral injections of a L-[methyl-3H]methionine and L-[35S]methionine mixture and the ratio of 3H/35S (methylation index) was determined. The ratios in the isolated MBP fractions were higher than those of 'acid extracts' and 'breakthrough' fractions, with a maximal ratio in the youngest brain. This high ratio was well correlated with the higher protein methylase I (PMI) activity in younger brains. The MBP fractions were further separated on SDS/polyacrylamide-gel electrophoresis into several species with apparent Mr ranging from 32,400 to 14,500. The results indicated that each protein species accumulated at a characteristic rate as a function of age. The high-Mr (32,400) species was predominant in younger brain, whereas the smaller MBP was the major species in older brain tissue. The importance of this developmental pattern of MBP synthesis and methylation is discussed in relation to PMI activity.
Collapse
|
6
|
Tai FL, Smith R, Bernard CC, Hearn MW. Evolutionary divergence in the structure of myelin basic protein: comparison of chondrichthye basic proteins with those from higher vertebrates. J Neurochem 1986; 46:1050-7. [PMID: 2419503 DOI: 10.1111/j.1471-4159.1986.tb00617.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A basic protein has been purified from the CNS myelin of the gummy shark (Mustelus antarticus). Electroblotting was used to examine the capacity of rabbit antisera raised against this electrophoretically pure protein to recognize myelin basic protein from higher vertebrates. The antisera bound to two shark proteins including the original polypeptide antigen and to chicken, bovine, and human myelin basic proteins. Thus, the shark protein appeared to possess antigenic determinants that have been retained through evolutionary divergence of these proteins. Whereas bovine basic protein caused experimental allergic encephalomyelitis in guinea pigs, animals that received injections of the shark protein showed neither clinical nor histological signs of this disease. However, tests for delayed-type hypersensitivity and for Arthus reaction following injection with the shark protein revealed a T-cell-mediated response to this antigen and substantial cross-reactivity with higher vertebrate basic proteins. Analysis of the amino acid composition of the shark protein, and comparison of its tryptic peptide map with that of the bovine protein, revealed substantial changes in the amino acid sequence. Although the shark protein has some antigenic determinants in common with the proteins from higher vertebrates, it appears that much of the structure differs.
Collapse
|
7
|
Sorg BJ, Agrawal D, Agrawal HC, Campagnoni AT. Expression of myelin proteolipid protein and basic protein in normal and dysmyelinating mutant mice. J Neurochem 1986; 46:379-87. [PMID: 2416874 DOI: 10.1111/j.1471-4159.1986.tb12979.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of myelin proteins was studied in the brains of 21-day-old normal mice and three dysmyelinating mutants-jimpy, quaking, and shiverer. Total brain polyribosomes and poly(A)+ mRNA were translated in two cell-free systems and the levels of synthesis of the myelin basic proteins (MBPs) and proteolipid protein (PLP) were determined. Synthesis of the MBPs in quaking homozygotes was at or above normal levels but PLP synthesis was significantly reduced to approximately 15% of control values, indicating independent effects on the expression of these proteins in this mutant. Immunoblot analysis of 21-day-old quaking brain homogenates showed a reduction in the steady-state levels of MBPs and PLP, suggesting a failure of newly synthesized MBPs to be incorporated into a stable membrane structure such as myelin. In the shiverer mutant very little synthesis of MBPs was observed, whereas greater synthesis of PLP occurred (approximately 50% of control). Almost no MBP, and low levels of PLP, were detected in the immunoblots, suggesting the possibility of a partial failure of PLP to be assembled into myelin in shiverer. In the jimpy mutant, low levels of MBP synthesis were observed in vitro (approximately 26% of controls) and very little synthesis of PLP was evident. The immunoblots of 21-day jimpy brain homogenates revealed no appreciable steady-state levels of PLP or MBP, again indicating that most newly synthesized MBPs were not incorporated into a stable membrane structure in this mutant. In sum, the data show that in the three cases examined, the mutation appears to affect the expression of the MBPs and PLP independently. Furthermore, regardless of their absolute levels of synthesis these proteins may or may not be assembled into myelin.
Collapse
|
8
|
Roth HJ, Hunkeler MJ, Campagnoni AT. Expression of myelin basic protein genes in several dysmyelinating mouse mutants during early postnatal brain development. J Neurochem 1985; 45:572-80. [PMID: 2409234 DOI: 10.1111/j.1471-4159.1985.tb04025.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Northern blot and "dot" blot analyses using a myelin basic protein (MBP) specific cDNA probe and in vitro translation techniques were utilized to estimate the relative levels of myelin basic protein messenger RNA (mRNA) in the brains of C57BL/6J control mice, three dysmyelinating mutants (qk/qk, jp/Y, and shi/shi), and three heterozygote controls (qk/+, jp/+, and shi+) during early postnatal development. In general, the MBP mRNA levels measured directly by Northern blot and "dot" blot analyses correlated well with the indirect in vitro translation measurements. The Northern blots indicated that the size of MBP mRNAs in quaking and jimpy brain polysomes appeared to be similar to controls. Very low levels of MBP mRNAs were observed in shi/shi brain polyribosomes throughout early postnatal development. Compared to C57BL/6J controls, accumulation of MBP mRNAs in qk/qk and qk/+ brain polyribosomes was delayed by several days. That is, whereas MBP mRNA levels were below normal between 12 and 18 days, normal levels of message had accumulated in both qk/qk and qk/+ brain polyribosomes by 21 days. Furthermore, normal levels of MBP mRNAs were observed to be maintained until at least 27 days. MBP mRNA levels remained well below control levels in jp/Y brain polyribosomes throughout early postnatal development. The levels did, however, fluctuate slightly and peaked at 15 days in both jp/Y and jp/+ brains, 3 days earlier than in normal mice. Thus, it appears that jimpy and quaking mice exhibit developmental patterns of MBP expression different from each other and from C57BL/6J control mice.
Collapse
|
9
|
Abstract
Poly(A+)RNA from sciatic nerves of embryos and chicks was translated in a rabbit reticulocyte cell-free system. The 30-K mol. wt. PO protein which is the major and specific protein constituent of peripheral nervous system myelin was used as a marker of myelin synthesis in the preparations. Immunoprecipitation of total translation products with rabbit anti-PO protein antibody showed the presence of a 29K protein band on the autoradiograms. The intensity of this specific immunoprecipitated band increased significantly from very low levels with RNA from the 15-day embryonic nerve to a maximum with extracts from 1-day-old chicks. This increase parallels that of the rapid deposition of the PO protein in the developing sciatic nerve in vivo. The experiments demonstrate for the first time, that it is possible to show synthesis of PO protein in vitro using exogenous RNA as the template.
Collapse
|
10
|
Poduslo JF, Dyck PJ, Berg CT. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection. J Neurochem 1985; 44:388-400. [PMID: 2578177 DOI: 10.1111/j.1471-4159.1985.tb05428.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Permanent nerve transection of the adult rat sciatic nerve forces Schwann cells in the distal nerve segment from a myelin-maintaining to a quiescent state. This transition was followed by serial morphometric evaluation of the percentage fascicular area having myelin (myelin percent of area) in transverse sections of the distal nerve segment and revealed a rapid decline from a normal value of 36.6% to 3.2% by 14 days for the sciatic nerve to less than 1.0% throughout the remaining time course (up to 105 days). No evidence of axonal reentry into the distal nerve segment or new myelin formation was observed at times under 70 days. In some of the distal nerve segments at 70, 90, and 105 days, new myelinated fibers were observed that usually consisted of only a few myelinated fibers at the periphery and in the worst case amounted to 1.6% (myelin percent of area). Radioactive precursor incorporation of [3H]mannose into endoneurial slices at 4 and 7 days after transection revealed two species of the major myelin glycoprotein, P0, with Mr of 28,500 and 27,700. By 14 days after nerve transection, only the 27,700 Mr species remained. Incorporation of [3H]mannose into the 27,700 Mr species increased progressively to 35 days after transection and then began to decline at 70 and 105 days. Alterations in the oligosaccharide structure of this down-regulated myelin glycoprotein accounted for the progressive increase in mannose incorporation. Lectin affinity chromatography of pronase-digested P0 glycopeptides on concanavalin A-Sepharose revealed that the 28,500 Mr species of P0 had the complex-type oligosaccharide as the predominant oligosaccharide structure (92%). In contrast, the high mannose-type oligosaccharide was the predominate structure for the 27,700 Mr form, which increased to 70% of the total radioactivity by 35 days after nerve transection. Since the biosynthesis of the complex-type oligosaccharide chains on glycoproteins involves high mannose-type intermediates, the mechanism of down-regulation in the biosynthesis of this major myelin glycoprotein, therefore, results in a biosynthetic switch from the complex-type oligosaccharide structure as an end product to the predominantly high mannose-type oligosaccharide structure as a biosynthetic intermediate. This biosynthetic switch occurs gradually between 7 and 14 days after nerve transection and likely reflects a decreased rate of processing through the Golgi apparatus. It remains to be determined if the high mannose-type oligosaccharide chain on P0 can undergo additional processing steps in this permanent nerve transection model.
Collapse
|
11
|
Frail DE, Braun PE. Two developmentally regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42683-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Lim L, Hall C, Leung T, Whatley S. The relationship of the rat brain 68 kDa microtubule-associated protein with synaptosomal plasma membranes and with the Drosophila 70 kDa heat-shock protein. Biochem J 1984; 224:677-80. [PMID: 6517872 PMCID: PMC1144481 DOI: 10.1042/bj2240677] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A protein of molecular mass 68 kDa and pI5.6 is a major translation product of rat brain mRNA [Hall, Mahadevan, Whatley, Biswas & Lim (1984) Biochem. J. 219, 751-761]. In the rat brain this protein was associated with microtubule preparations and was present together with tubulin as a component of the synaptosomal plasma membranes, synaptic vesicles and post-synaptic structures. The brain mRNA for this protein was found to hybridize specifically to the Drosophila gene for the 70 kDa heat-shock protein, thus enabling its rapid isolation.
Collapse
|
13
|
Kerlero De Rosbo N, Carnegie PR, Bernard CC, Linthicum DS. Detection of various forms of brain myelin basic protein in vertebrates by electroimmunoblotting. Neurochem Res 1984; 9:1359-69. [PMID: 6083464 DOI: 10.1007/bf00964663] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An electroimmunoblot technique was used to detect various forms of myelin basic protein (MBP) in brain homogenates of 14 vertebrate species. Three antibodies were used to probe the immunoblots: a monoclonal anti-human MPB reacting with an antigenic determinant located at amino acid residues 131 to 136; a polyclonal anti-human MBP and a polyclonal anti-chicken MBP. Because no processing of the tissue is required prior to electrophoresis, in vitro artifacts are minimized. The 18.5 K form of MBP was present in all species except the shark. A 21.5 K MBP was observed in ovine, bovine, pig, rabbit, mouse, rat, monkey, but not in human, guinea pig, shark, toad and marsupial brains. A variant with a molecular weight between 17 K and 18 K was found in mouse, rat, bovine, human, monkey, pig, and chicken brains, and was the sole component in the shark brain. Marsupial brains had five or six forms of MBP between 14.5 K and 18.5 K.
Collapse
|
14
|
Hall C, Mahadevan L, Whatley S, Biswas G, Lim L. Characterization of translation products of the polyadenylated RNA of free and membrane-bound polyribosomes of rat forebrain. Biochem J 1984; 219:751-61. [PMID: 6204641 PMCID: PMC1153541 DOI: 10.1042/bj2190751] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Poly(A)+ RNA (polyadenylated RNA) isolated from membrane-bound and free polyribosomes was translated in reticulocyte lysates, and the products were analysed by two-dimensional gel electrophoresis. Several translation products were specific to membrane-bound polyribosomal mRNA, including polypeptides of 47kDa, 35kDa and 21 kDa, whereas others (e.g. of 37 kDa, 17 kDa and 14 kDa) were specific to free polyribosomal mRNA. Although many products were common to both mRNA species, cross-contamination could be ruled out on the basis of the presence of these and other specific products. The common products included a 68 kDa microtubule-associated protein, tubulin, actin, the brain form of creatine kinase, neuron-specific enolase and protein 14-3-3 and calmodulin, all of which were identified on the basis of two-dimensional gel and peptide analyses. The 35 kDa protein product of membrane-specific mRNA was co-translationally processed in vitro by microsomal membranes, resulting in its cleavage to 33 kDa (and partial glycosylation). The 33 kDa processed protein (but not the 35 kDa precursor) was integrated into both dog pancreas and rat brain microsomal membranes. The occurrence of the enzymes and calmodulin as products of membrane-bound polyribosomal mRNA is discussed in the light of their presence on rat brain synaptic plasma membranes [Lim, Hall, Leung, Mahadevan & Whatley (1983) J. Neurochem. 41, 1177-1182] and their existence in a specific component of axonal flow. It is suggested that some of these translation products of the rough endoplasmic reticulum may represent proteins destined for the plasma membrane. However, the identity and location of the 35 kDa membrane-specific product (or its processed form) still remain unestablished.
Collapse
|
15
|
Abstract
The 21,500 molecular weight (21.5K) variant of myelin basic protein (MBP) was isolated from sheep brain and partially characterized. Digestion with cyanogen bromide and trypsin yielded peptides which showed that approximately 30 additional amino acids were inserted at the equivalent of the amino acid at position 57 in the bovine 18.5K MBP sequence. An unusually hydrophobic peptide Pro, Val, Leu, Trp, Lys was present in this region. Ornithine was present in hydrolyzates of 21.5K MBP, but it was not detected in any of the peptides.
Collapse
|
16
|
Campagnoni AT, Campagnoni CW, Bourre JM, Jacque C, Baumann N. Cell-free synthesis of myelin basic proteins in normal and dysmyelinating mutant mice. J Neurochem 1984; 42:733-9. [PMID: 6198470 DOI: 10.1111/j.1471-4159.1984.tb02744.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Total polyribosomes were isolated from the brains of 16-20 day C57BL/6 mice, four neurological mutants (qk/qk, shi/shi, mld/mld, and jp/Y), and four heterozygote or littermate controls (qk/+, shil/+, mld, and jp littermates) and translated in a homologous, cell-free system. No differences were observed among the nine genotypes in either the yield of polysomes (32.2 +/- 0.6 A260/g brain) or in the incorporation of [35S]methionine into trichloroacetic acid-precipitable protein. However, when the four myelin basic proteins (BPs) were isolated from the translation mixtures little incorporation of [35S]methionine into the BPs was noted in those assays directed by polysomes from mld/mld or from shi/shi animals. Compared with C57BL/6 polysomes, mld littermate and shi/+ polysomes incorporated approximately half the levels of label into the four BPs while qk/+ and qk/qk incorporated normal and close-to-normal levels. Polysomes from jp littermates and jp/Y brains synthesized 66% and less than 15% of the levels of the 14K BP compared with C57BL/6 polysomes. Incorporation of label into the other three BPs was normal with jp littermate polysomes and about half the control levels with jp/Y polysomes. The data indicate that shi/shi and mld/mld mutants either produce altered BPs not recognized by our antibody or synthesize very low levels of BP. The data provide additional support for the notion that the qk/qk mutant synthesizes much higher levels of MBP than are incorporated into myelin. They also indicate that in the jimpy mutant the synthesis of the four BPs is affected to differing extents; thus, the mutant cannot be easily characterized as either an "assembly" or "synthesis" defect.
Collapse
|
17
|
Tai FL, Smith R. Shark CNS myelin contains four polypeptides related to the PNS protein Po of higher classes. Brain Res 1983; 278:350-3. [PMID: 6640326 DOI: 10.1016/0006-8993(83)90270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The relationship between the proteins of shark central nervous system (CNS) myelin and those of myelin from higher classes has been investigated using antibodies raised against a 31,500 molecular weight polypeptide from shark myelin. The antibodies cross-reacted with 3 shark CNS polypeptides apart from the original antigen, with 2 major polypeptides from shark peripheral nervous system myelin, with the Po protein from chicken and sheep peripheral nervous system myelin, but with none of the components of bovine CNS myelin. It appears that the oligodendroglial cells of the shark synthesize a protein closely related to the Po protein produced by Schwann cells of vertebrate classes above and including chondrichthytes.
Collapse
|
18
|
Carson JH, Nielson ML, Barbarese E. Developmental regulation of myelin basic protein expression in mouse brain. Dev Biol 1983; 96:485-92. [PMID: 6187613 DOI: 10.1016/0012-1606(83)90185-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Developmental regulation of myelin basic protein expression in mouse brain has been examined by comparing the myelin basic protein coding potential of mRNA in vitro with the accumulation of myelin basic protein-related polypeptides in vivo. In vitro translation of mRNA isolated from mouse brain generated eight myelin basic protein-related polypeptides with apparent molecular weights of 34K, 30K, 29K, 26K, 21.5K, 18.5K, 17K, and 14K. A similar set of eight myelin basic protein-related polypeptides with corresponding molecular weights was identified in vivo when total brain proteins were analyzed by immunoblotting. Each of the myelin basic protein-related polypeptides shows a characteristic developmental profile in terms of mRNA level and rate of accumulation implying a complex developmental program of myelin basic protein gene expression with regulation and modulation at several different biosynthetic levels.
Collapse
|
19
|
Barahona I, Galego L, Rodrigues-Pousada C. Protein synthesis directed by polyadenylated and non-polyadenylated RNA isolated from membrane-bound and free polysomes of Tetrahymena pyriformis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:171-6. [PMID: 6187567 DOI: 10.1111/j.1432-1033.1983.tb07245.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Free and membrane-bound polysomes were prepared from the protozoa Tetrahymena pyriformis using a procedure which gives good recovery and practically no cross-contamination. Polysomes are intact as analysed by sedimentation analysis. Poly(A)-rich RNA and poly(A)-free RNA, isolated from both populations of polysomes, show similar electrophoretic patterns. These RNAs were translated in the rabbit reticulocyte lysate cell-free system and the translation products were analysed by one-dimensional and two-dimensional gel electrophoresis. The most striking differences were found in the two-dimensional electrophoretic analysis namely: (a) a group of polypeptides (10) is synthesized mainly on membrane-bound polysomes, (b) a second abundant group is synthesized mainly in free polysomes (c) and a third class of polypeptides is synthesized on both kinds of polysomes. Poly(A)-free RNAs, isolated from free polysomes, are also able to promote synthesis of some polypeptides. The results are discussed taking into account the fact that T. pyriformis is a non-secretory cell.
Collapse
|
20
|
Dautigny A, Alliel PM, Nussbaum JL, Jollès P. Cell free synthesis of rat brain myelin proteolipids and their identification by immunoprecipitation. Biochem Biophys Res Commun 1983; 110:432-7. [PMID: 6188456 DOI: 10.1016/0006-291x(83)91167-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Colman DR, Kreibich G, Frey AB, Sabatini DD. Synthesis and incorporation of myelin polypeptides into CNS myelin. J Cell Biol 1982; 95:598-608. [PMID: 6183276 PMCID: PMC2112951 DOI: 10.1083/jcb.95.2.598] [Citation(s) in RCA: 354] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The distribution of newly synthesized proteolipid protein (PLP, 23 kdaltons) and myelin basic proteins (MBPs, 14-21.5 kdaltons) was determined in microsomal and myelin fractions prepared from the brainstems o1 10-30 d-old rats sacrificed at different times after an intracranial injection of 35S-methionine. Labeled MBPs were found in the myelin fraction 2 min after the injection, whereas PLP appeared first in the rough microsomal fraction and only after a lag of 30 min in the myelin fraction. Cell-free translation experiments using purified mRNAs demonstrated that PLP and MBPs are synthesized in bound and free polysomes, respectively. A mechanism involving the cotranslational insertion into the ER membrane and subsequent passage of the polypeptides through the Golgi apparatus is consistent with the lag observed in the appearance of the in vivo-labeled PLP in the myelin membrane. Newly synthesized PLP and MBPs are not proteolytically processed, because the primary translation products synthesized in vitro had the same electrophoretic mobility and N-terminal amino acid sequence as the mature PLP and MBP polypeptides. It was found that crude myelin fractions are highly enriched in mRNAs coding for the MBPs but not in mRNA coding for PLP. This suggests that whereas the bound polysomes synthesizing PLP are largely confined to the cell body, free polysomes synthesizing MBPs are concentrated in oligodendrocyte processes involved in myelination, which explains the immediate incorporation of MBPs into the developing myelin sheath.
Collapse
|