1
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de La Cruz J. Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae. RNA Biol 2020; 17:1261-1276. [PMID: 32408794 DOI: 10.1080/15476286.2020.1767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In eukaryotes, the beak structure of 40S subunits is formed by the protrusion of the 18S rRNA helix 33 and three ribosomal proteins: eS10, eS12 and eS31. The exact role of these proteins in ribosome biogenesis is not well understood. While eS10 is an essential protein encoded by two paralogous genes in Saccharomyces cerevisiae, eS12 and eS31 are not essential proteins encoded by the single-copy genes RPS12 and UBI3, respectively. Here, we have analysed the contribution of yeast eS12 to ribosome biogenesis and compared it with that of eS31. Polysome analysis reveals that deletion of either RPS12 or UBI3 results in equivalent 40S deficits. Analysis of pre-rRNA processing indicates that eS12, akin to eS31, is required for efficient processing of 20S pre-rRNA to mature 18S rRNA. Moreover, we show that the 20S pre-rRNA accumulates within cytoplasmic pre-40S particles, as deduced from FISH experiments and the lack of nuclear retention of 40S subunit reporter proteins, in rps12∆ and ubi3∆ cells. However, these particles containing 20S pre-rRNA are not efficiently incorporated into polyribosomes. We also provide evidence for a genetic interaction between eS12 or eS31 and the late-acting 40S assembly factors Enp1 and Ltv1, which appears not to be linked to the dynamics of their association with or release from pre-40S particles in the absence of either eS12 or eS31. Finally, we show that eS12- and eS31-deficient ribosomes exhibit increased levels of translational misreading. Altogether, our data highlight distinct important roles of the beak region during ribosome assembly and function.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - José Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Olga Rodríguez-Galán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Julia Fernández-Boraita
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla , Seville, Spain
| | - Jesús de La Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| |
Collapse
|
3
|
Shuai K, Warner JR. A temperature sensitive mutant of Saccharomyces cerevisiae defective in pre-rRNA processing. Nucleic Acids Res 1991; 19:5059-64. [PMID: 1923772 PMCID: PMC328810 DOI: 10.1093/nar/19.18.5059] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A recessive temperature sensitive mutant has been isolated that is defective in ribosomal RNA processing. By Northern analysis, this mutant was found to accumulate three novel rRNA species: 23S', 18S' and 7S', each of which contains sequences from the spacer region between 25S and 18S rRNA. 35S pre-rRNA accumulates, while the level of the 20S and 27S rRNA processing intermediates is depressed. Pulse-chase analysis demonstrates that the processing of 35S pre-rRNA is slowed. The defect in the mutant appears to be at the first processing step, which generates 20S and 27S rRNA. 7S' RNA is a form of 5.8S RNA whose 5' end is extended by 149 nucleotides to a position just 5 nucleotides downstream of the normal cleavage site that produces 20S and 27S rRNA. 7S' RNA can assemble into 60S ribosomal subunits, but such subunits are relatively ineffective in joining polyribosomes. A single lesion is responsible for the pre-rRNA processing defect and the temperature sensitivity. The affected gene is designated RRP2.
Collapse
Affiliation(s)
- K Shuai
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
4
|
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
5
|
Fernandez-Lobato M, Cannon M, Mitlin JA, Mount RC, Jimenez A. Characterization of Saccharomyces cerevisiae strains displaying high-level or low-level resistance to trichothecene antibiotics. Biochem J 1990; 267:709-13. [PMID: 2187436 PMCID: PMC1131355 DOI: 10.1042/bj2670709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biochemical and genetic analyses have been carried out on Saccharomyces cerevisiae strains characterized in vivo as sensitive, low-level-resistant or high-level-resistant to trichothecene antibiotics. Levels of drug resistance in vitro were determined for each strain and for suitable diploids derived from them. Ribosome biogenesis was also studied in selected haploids. It is suggested that resistance in all cases results from a mutation in the gene encoding ribosomal protein L3. If this is indeed the situation, then different mutations in this same gene not only can cause low-level or high-level resistance to trichothecene antibiotics but also can affect the maturation of either 40 S or 60 S ribosomal subunits.
Collapse
Affiliation(s)
- M Fernandez-Lobato
- Centro de Biologia Molecular, CSIC, Universidad Autonoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Fabian GR, Hopper AK. RRP1, a Saccharomyces cerevisiae gene affecting rRNA processing and production of mature ribosomal subunits. J Bacteriol 1987; 169:1571-8. [PMID: 3549696 PMCID: PMC211984 DOI: 10.1128/jb.169.4.1571-1578.1987] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Saccharomyces cerevisiae mutant ts351 had been shown to affect processing of 27S pre-rRNA to mature 25S and 5.8S rRNAs (C. Andrew, A. K. Hopper, and B. D. Hall, Mol. Gen. Genet. 144:29-37, 1976). We showed that this strain contains two mutations leading to temperature-sensitive lethality. The rRNA-processing defect, however, is a result of only one of the two mutations. We designated the lesion responsible for the rRNA-processing defect rrp1 and showed that it is located on the right arm of chromosome IV either allelic to or tightly linked to mak21. This rrp1 lesion also results in hypersensitivity to aminoglycoside antibiotics and a reduced 25S/18S rRNA ratio at semipermissive temperatures. We cloned the RRP1 gene and provide evidence that it encodes a moderately abundant mRNA which is in lower abundance and larger than most mRNAs encoding ribosomal proteins.
Collapse
|
7
|
Threadgill GJ, Conrad RC, Changchien LM, Cannon M, Craven GR. Application of high-performance liquid chromatography to the purification and characterization of ribosomal protein L3 from trichodermin-resistant yeast mutants. Biochem J 1986; 237:421-6. [PMID: 3541900 PMCID: PMC1147002 DOI: 10.1042/bj2370421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new h.p.l.c. cation-exchange method has been used to separate proteins from 60S ribosomal subunits prepared from strains of Saccharomyces cerevisiae sensitive or resistant to trichodermin. Ribosomal protein L3 was identified in column eluates by one-dimensional and two-dimensional gel electrophoresis and purified further by reverse-phase h.p.l.c. The protein was cleaved with CNBr and the products were analysed, again by reverse-phase h.p.l.c. A marked difference was observed in the peptide profiles between preparations from trichodermin-sensitive and trichodermin-resistant yeast strains. These results provide the first direct demonstration that, in yeast, mutationally induced resistance to trichodermin can alter the covalent structure of ribosomal protein L3. They convincingly demonstrate the potential of the experimental technique for the rapid and preparative separation of a selected yeast ribosomal protein and its subsequent characterization.
Collapse
|
8
|
Li AW, Singer RA, Johnston GC. Effects of sinefungin on rRNA production and methylation in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys 1985; 240:613-20. [PMID: 3896147 DOI: 10.1016/0003-9861(85)90068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The antifungal agent, Sinefungin (SF), has been shown to be an inhibitor of transmethylation reactions. We report here the effects of SF on the production and methylation of rRNA in the yeast, Saccharomyces cerevisiae. Under conditions of SF treatment which have been shown to affect the regulation of cell proliferation in this yeast, pulse-chase labeling experiments using [methyl-3H]methionine and [3H]uracil indicated that methyl incorporation into rRNA during a short labeling period was inhibited, and stable 18 S rRNA production was differentially decreased. Other experiments quantitating modified nucleotides in newly produced rRNA showed that stable molecules were methylated. Taken together, these results suggest that SF slows methylation of rRNA, and is associated with differential loss of undermethylated 18 S rRNA species.
Collapse
|