Akhtar M. The modification of acetate and propionate side chains during the biosynthesis of haem and chlorophylls: mechanistic and stereochemical studies.
CIBA FOUNDATION SYMPOSIUM 2007;
180:131-51; discussion 152-5. [PMID:
7842850 DOI:
10.1002/9780470514535.ch8]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the conversion of uroporphyrinogen III into protoporphyrin IX and thence into chlorophylls, all eight carboxylic side chains, as well as the four meso positions, are modified, and four enzymes are involved. In the uroporphyrinogen decarboxylase-catalysed reaction all four acetate side chains are converted into methyl groups by the same mechanism, to produce coproporphyrinogen III. Both methylene hydrogen atoms remain undisturbed and the reaction occurs with the retention of stereochemistry. Several questions regarding the enzymology of the decarboxylase are posed. Do all the decarboxylations occur at the same active site and, if so, are the four acetate chains handled in a particular sequence? Is the decarboxylation reaction aided by the transient formation of an electron-withdrawing functionality in the pyrrole ring? Coproporphyrinogen oxidase converts the two propionate side chains of rings A and B into vinyl groups, with an overall anti-periplanar removal of the carboxyl group and the Hsi from the neighbouring position. Evidence is examined to evaluate whether a hydroxylated compound acts as an intermediate in the oxidative decarboxylation reaction. Protoporphyrinogen oxidase then converts the methylene-interrupted macrocycle of protoporphyrinogen IX into a conjugated system. The conversion has been suggested to involve three consecutive dehydrogenation reactions followed by an isomerization step. The face of the macrocycle from which the three meso hydrogen atoms are removed in the dehydrogenation reaction is thought to be opposite to that from which the fourth meso hydrogen is lost during the prototropic rearrangement. In an investigation of the in vivo mechanism for the esterification of the ring D propionic acid group with a C20 isoprenyl group 5-aminolaevulinic acid was labelled with 13C and 18O at C-1 and incorporated into bacteriochlorophyll a. The 18O-induced shift of the 13C resonance in the NMR spectrum showed that both oxygen atoms of the carboxyl group are retained in the ester bond. This and other results suggest that the reaction occurs by the nucleophilic attack of the ring D carboxylate anion on the activated form of an isoprenyl alcohol.
Collapse