1
|
Pätsi J, Kervinen M, Kytövuori L, Majamaa K, Hassinen IE. Effects of pathogenic mutations in membrane subunits of mitochondrial Complex I on redox activity and proton translocation studied by modeling in Escherichia coli. Mitochondrion 2015; 22:23-30. [PMID: 25747201 DOI: 10.1016/j.mito.2015.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 01/12/2023]
Abstract
Effects of Complex I mutations were studied by modeling in NuoH, NuoJ or NuoK subunits of Escherichia coli NDH-1 by simultaneous optical monitoring of deamino-NADH oxidation and proton translocation and fitting to the data a model equation of transmembrane proton transport. A homolog of the ND1-E24 LHON/MELAS mutation caused 95% inhibition of d-NADH oxidation and proton translocation. The NuoJ-Y59F replacement decreased proton translocation. The NuoK-E72Q mutation lowered the enzyme activity, but proton pumping could be rescued by the double mutation NuoK-E72Q/I39D. Moving the NuoK-E72/E36 pair one helix turn towards the periplasm did not affect redox activity but decreased proton pumping.
Collapse
Affiliation(s)
- Jukka Pätsi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Marko Kervinen
- Department of Ophthalmology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Laura Kytövuori
- Department of Neurology and Medical Research Center, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Kari Majamaa
- Department of Neurology and Medical Research Center, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| |
Collapse
|
2
|
Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M. Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 2000; 39:13496-502. [PMID: 11063586 DOI: 10.1021/bi001134s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steady-state kinetics of the H(+)-translocating NADH:ubiquinone reductase (complex I) were analyzed in membrane samples from bovine mitochondria and the soil bacterium Paracoccus denitrificans. In both enzymes the calculated K(m) values, in the membrane lipid phase, for four different ubiquinone analogues were in the millimolar range. Both the structure and size of the hydrophobic side chain of the acceptor affected its affinity for complex I. The ND1 subunit of bovine complex I is a mitochondrially encoded protein that binds the inhibitor dicyclohexylcarbodiimide (DCCD) covalently [Yagi and Hatefi (1988) J. Biol. Chem. 263, 16150-16155]. The NQO8 subunit of P. denitrificans complex I is a homologue of ND1, and within it three conserved Glu residues that could bind DCCD, E158, E212, and E247, were changed to either Asp or Gln and in the case of E212 also to Val. The DCCD sensitivity of the resulting mutants was, however, unaffected by the mutations. On the other hand, the ubiquinone reductase activity of the mutants was altered, and the mutations changed the interactions of complex I with short-chain ubiquinones. The implications of the results for the location of the ubiquinone reduction site in this enzyme are discussed.
Collapse
Affiliation(s)
- S Kurki
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
3
|
Hassinen IE, Vuokila PT. Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:107-24. [PMID: 8396439 DOI: 10.1016/0005-2728(93)90164-b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- I E Hassinen
- Department of Medical Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
4
|
Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1141:1-17. [PMID: 8435434 DOI: 10.1016/0005-2728(93)90182-f] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- T Yagi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
5
|
Watkins JA, Altazan JD, Elder P, Li CY, Nunez MT, Cui XX, Glass J. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry 1992; 31:5820-30. [PMID: 1535218 DOI: 10.1021/bi00140a018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reductant dependence of iron mobilization from isolated rabbit reticulocyte endosomes containing diferric transferrin is reported. The kinetic effects of acidification by a H(+)-ATPase are eliminated by incubating the endosomes at pH 6.0 in the presence of 15 microM FCCP to acidify the intravesicular milieu and to dissociate 59Fe(III) from transferrin. In the absence of reductants, iron is not released from the vesicles, and iron leakage is negligible. The second-order dependence of rate constants and amounts of 59Fe mobilized from endosomes using ascorbate, ferrocyanide, or NADH are consistent with reversible mechanisms. The estimated apparent first-order rate constant for mobilization by ascorbate is (2.7 +/- 0.4) x 10(-3) s-1 in contrast to (3.2 +/- 0.1) x 10(-4) s-1 for NADH and (3.5 +/- 0.6) x 10(-4) s-1 for ferrocyanide. These results support models where multiple reactions are involved in complex processes leading to iron transfer and membrane translocation. A type II NADH dehydrogenase (diaphorase) is present on the endosome outer membrane. The kinetics of extravesicular ferricyanide reduction indicate a bimolecular-bimolecular steady-state mechanism with substrate inhibition. Ferricyanide inhibition of 59Fe mobilization is not detected. Significant differences between mobilization and ferricyanide reduction kinetics indicate that the diaphorase is not involved in 59Fe(III) reduction. Sequential additions of NADH followed by ascorbate or vice versa indicate a minimum of two sites of 59Fe(III) residence; one site available to reducing equivalents from ascorbate and a different site available to NADH. Sequential additions using ferrocyanide and the other reductants suggest interactions among sites available for reduction. Inhibition of ascorbate-mediated mobilization by DCCD and enhancement of ferrocyanide and NADH-mediated mobilization suggest a role for a moiety with characteristics of a proton pore similar to that of the H(+)-ATPase. These data provide significant constraints on models of iron reduction, translocation, and mobilization by endocytic vesicles.
Collapse
Affiliation(s)
- J A Watkins
- Department of Medicine, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | | | |
Collapse
|
6
|
Hofhaus G, Weiss H, Leonard K. Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J Mol Biol 1991; 221:1027-43. [PMID: 1834851 DOI: 10.1016/0022-2836(91)80190-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two related forms of the respiratory chain NADH dehydrogenase (NADH:ubiquinone reductase or complex I) are synthesized in the mitochondria of Neurospora crassa. Normally growing cells make a large form that consists of 25 subunits encoded by nuclear DNA and six to seven subunits encoded by mitochondrial DNA. Cells grown in the presence of chloramphenicol, however, make a smaller form comprising only 13 subunits, all encoded by nuclear DNA. When the large enzyme is dissected by chaotropic agents (such as NaBr), all those subunits of the large form that are missing in the small form can be isolated as a distinct, so-called hydrophobic fragment. The small enzyme and the hydrophobic fragment make up, with regard to their redox groups, subunit composition and function, two complementary parts of the large-form NADH dehydrogenase. Averaging of electron microscope images of single particles of the large enzyme was carried out, revealing an unusual L-shaped structure with two domains or "arms" arranged at right angles. The hydrophobic fragment obtained by the NaBr treatment corresponds in size and appearance to one of these arms. A three-dimensional reconstruction from images of negatively stained membrane crystals of the large-form NADH dehydrogenase shows a peripheral domain, protruding from the membrane, with weak unresolved density within the membrane. This peripheral domain was removed by washing the crystals in situ with 2 M-NaBr, exposing a large membrane-buried domain, which was reconstructed in three dimensions. A three-dimensional reconstruction of the small enzyme from negatively stained membrane crystals, also described here, shows only a peripheral domain. These results suggest that the membrane protruding arm of the large form corresponds to the small enzyme, whereas the arm lying within the membrane can be identified as the hydrophobic fragment. The two parts of NADH dehydrogenase that can be defined by the separate genetic origin of (most of) their subunits, their independent assembly, and their distinct contributions to the electron pathway can thus be assigned to the two arms of the L-shaped complex I.
Collapse
Affiliation(s)
- G Hofhaus
- Universität Düsseldorf, Institut für Biochemie, Germany
| | | | | |
Collapse
|
7
|
Weiss H, Friedrich T, Hofhaus G, Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:563-76. [PMID: 2029890 DOI: 10.1111/j.1432-1033.1991.tb15945.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Weiss
- Institut für Biochemie, Universität Düsseldorf, Federal Republic of Germany
| | | | | | | |
Collapse
|
8
|
Wang DC, Meinhardt SW, Sackmann U, Weiss H, Ohnishi T. The iron-sulfur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:257-64. [PMID: 1849820 DOI: 10.1111/j.1432-1033.1991.tb15906.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two related forms of the respiratory-chain complex, NADH: ubiquinone oxidoreductase (Complex I) are synthesized in the mitochondria of Neurospora crassa. Normally growing cells make a large, piericidin-A-sensitive form, which consists of some 23 different nuclear- and 6-7 mitochondrially encoded subunits. Cells grown in the presence of chloramphenicol make a small, piericidin-A-insensitive form which consists of only approximately 13 nuclear-encoded subunits. The subunits of the small form are either identical or similar to nuclear-encoded subunits of the large form. The iron-sulfur clusters in these two forms of Complex I are characterized by redox potentiometry and EPR spectroscopy. The large form of Complex I contains four EPR-detectable iron-sulfur clusters, N1, N2, N3 and N4, with the spin concentration of the individual clusters equivalent to the flavin concentration, similar to the mammalian counterparts. The small Complex I contains clusters N1, N3 and N4, but it is devoid of cluster N2. A model of the electron-transfer route through the large form of Complex I has been derived from these findings and an evolutionary pathway which leads to the emergence of large Complex I is discussed.
Collapse
Affiliation(s)
- D C Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104-6089
| | | | | | | | | |
Collapse
|
9
|
Artzatbanov VYu, Ostrovsky DN. The distribution of electron flow in the branched respiratory chain of Micrococcus luteus. Biochem J 1990; 266:481-6. [PMID: 2156496 PMCID: PMC1131157 DOI: 10.1042/bj2660481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endogenous coupled respiration of Micrococcus luteus protoplasts showed a relatively high resistance to low concentrations of KCN, 2-nonyl-4-hydroxyquinoline N-oxide (NQNO) and dicyclohexylcarbodi-imide (DCCD) when the inhibitors were applied individually. In the presence of both KCN and NQNO (or DCCD), O2 uptake was strongly inhibited. The proteolysis of external membrane proteins of protoplasts also induced the high sensitivity of endogenous coupled respiration to low KCN. The effects of NQNO, DCCD and proteolysis were explained by the inhibition of an alternative respiratory system when reducing equivalents passed preferentially down the KCN-sensitive cytochrome oxidase. Uncoupling of the cell membrane increased the electron flow via the cytochrome oxidase-containing respiratory branch. It is suggested that the energy state of cells could control the electron-flow distribution between two branches, and quinones of different levels of reduction could be involved in the mechanism of respiratory branching.
Collapse
Affiliation(s)
- Artzatbanov VYu
- A. N. Bach Institute of Biochemistry, U.S.S.R. Academy of Sciences, Moscow
| | | |
Collapse
|
10
|
Holden MJ, Sze H. Effects of Helminthosporium maydis Race T Toxin on Electron Transport in Susceptible Corn Mitochondria and Prevention of Toxin Actions by Dicyclohexylcarbodiimide. PLANT PHYSIOLOGY 1989; 91:1296-302. [PMID: 16667179 PMCID: PMC1062182 DOI: 10.1104/pp.91.4.1296] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effect of Helminthosporium maydis race T toxin on electron transport in susceptible cytoplasmic male-sterile Texas corn (Zea mays L.) mitochondria was investigated, using dichlorophenol indophenol and ferricyanide as electron acceptors. Succinate-dependent electron transport was stimulated by the toxin, consistent with the well described increase in membrane permeability induced by the toxin. Malate-dependent electron transport was inhibited. This inhibition of electron transport increased as a function of time of exposure to the toxin. Mitochondria from normal-fertile (N) corn were not affected by the toxin. Both the inhibition of electron transport and the increase in ion permeability, such as dissipation of membrane potential and Ca(2+) gradients, induced by the toxin in T corn was prevented by N,N'-dicyclohexylcarbodiimide, a hydrophobic carbodiimide. A water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, was ineffective in preventing dissipation of membrane potential by the toxin. These results suggest that the various toxin actions are mediated via interaction of the toxin with one target site, most probably a 13 kilodalton polypeptide unique to T mitochondria. N,N'-dicyclohexylcarbodiimide may confer protection by modifying an amino acid residue in a hydrophobic portion of the target site.
Collapse
Affiliation(s)
- M J Holden
- Department of Botany and Center for Agricultural Biotechnology, University of Maryland, College Park, Maryland 20742
| | | |
Collapse
|
11
|
Vuokila PT, Hassinen IE. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:219-22. [PMID: 2540836 DOI: 10.1016/s0005-2728(89)80375-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sensitivity of the H+/2e- ratio of the redox-driven proton pumping by the NADH: ubiquinone reductase (complex I) of the submitochondrial particles to dicyclohexylcarbodiimide (DCCD) was studied by a thermodynamic approach, measuring the membrane potential and delta pH across the membrane and the redox potential difference across the complex I span of the respiratory chain. The delta Gr/delta muH+ ratio did not decrease upon additions of 50 or 100 nmol of DCCD per mg protein in the presence of oligomycin although the H+/2e- ratio has been demonstrated to decrease upon DCCD addition in kinetic experiments with mitochondria. Complex I then becomes reminiscent of the cytochrome bc1 complex, which shows DCCD sensitivity of the kinetically but not thermodynamically determined H+/2e- ratio.
Collapse
Affiliation(s)
- P T Vuokila
- Department of Medical Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
12
|
Vuokila PT, Hassinen IE. NN'-dicyclohexylcarbodi-imide-sensitivity of bovine heart mitochondrial NADH: ubiquinone oxidoreductase. Inhibition of activity and binding to subunits. Biochem J 1988; 249:339-44. [PMID: 3124826 PMCID: PMC1148708 DOI: 10.1042/bj2490339] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course for the binding of DCCD to the enzyme was similar to that of activity inhibition. The NADH:ubiquinone oxidoreductase activity of the submitochondrial particles was also sensitive to DCCD, and the locus of binding of the inhibitor was studied by subsequent resolution of the enzyme into subunit polypeptides. Only two subunits (molecular masses 13.7 and 21.5 kDa) were labelled by [14C]DCCD, whereas, when the enzyme in its isolated form was treated with [14C]DCCD, six subunits (13.7, 16.1, 21.5, 39, 43 and 53 kDa) were labelled. Comparison with the subunit labelling of F1F0-ATPase and ubiquinol:cytochrome c oxidoreductase indicated that the labelling pattern of NADH:ubiquinone oxidoreductase, and enzyme complex with a multitude of subunits, is unique and not due to contamination by other inner-membrane proteins. The correlation between the electron- and proton-transport functions and the DCCD-binding components remains to be established.
Collapse
Affiliation(s)
- P T Vuokila
- Department of Medical Biochemistry, University of Oulu, Finland
| | | |
Collapse
|