1
|
Chao M, Hu G, Dong J, Chen Y, Fu Y, Zhang J, Wang Q. Sequence Characteristics and Expression Analysis of the Gene Encoding Sedoheptulose-1,7-Bisphosphatase, an Important Calvin Cycle Enzyme in Upland Cotton (Gossypium hirsutum L.). Int J Mol Sci 2023; 24:ijms24076648. [PMID: 37047620 PMCID: PMC10095544 DOI: 10.3390/ijms24076648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Sedoheptulose-1,7-bisphosphatase (SBPase, EC 3.1.3.37) is a key enzyme in the plant Calvin cycle and one of the main rate-limiting enzymes in the plant photosynthesis pathway. Many studies have demonstrated that the SBPase gene plays an important role in plant photosynthetic efficiency, yield, and stress responses; however, few studies have been conducted on the function and expression of the GhSBPase gene in upland cotton. In this study, our results showed that the coding sequence (CDS) of GhSBPase gene was 1182 bp, encoding a protein with 393 amino acids. The GhSBPase protein had adenosine monophosphate (AMP) binding site and a FIG (FBPase/IMPase/glpX) domain, and had six Cys residues and a CGGT(A/Q)C motif that were involved in redox regulation in plants. Evolutionarily, the GhSBPase protein clustered into the dicotyledon subgroup and was most closely related to the tomato SlSBPase protein. Western-blot analysis further indicated that the GhSBPase gene was indeed the gene encoding the SBPase protein in upland cotton. The GhSBPase protein was localized in chloroplast, which was consistent with its function as a key enzyme in photosynthesis. The GhSBPase gene was specifically highly expressed in leaves, and its expression level was significantly lower in a yellow-green leaf mutant than in the wild type. Moreover, the GhSBPase expression was in response to drought, salt, high- and low-temperature stress, and exhibits different expression patterns. The GhSBPase promoter had the cis-acting elements in response to abiotic stress, phytohormone, and light. In addition, the GhSBPase expression was positively correlated with the chlorophyll fluorescence parameters, suggesting that changes in the expression of the GhSBPase had potential applicability in breeding for enhanced cotton photosynthetic efficiency. These results will help to understand the function of the GhSBPase gene in photosynthesis and the adaptability of plants to external stress and provide important gene information for the high-yield breeding of crops in the future.
Collapse
Affiliation(s)
- Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Genhai Hu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Chen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanzhi Fu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
2
|
Hochmal AK, Schulze S, Trompelt K, Hippler M. Calcium-dependent regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:993-1003. [PMID: 25687895 DOI: 10.1016/j.bbabio.2015.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/03/2023]
Abstract
The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany.
| |
Collapse
|
3
|
Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 2013; 195:5112-22. [PMID: 24013630 DOI: 10.1128/jb.00672-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.
Collapse
|
4
|
Identification of CP12 as a Novel Calcium-Binding Protein in Chloroplasts. PLANTS 2013; 2:530-40. [PMID: 27137392 PMCID: PMC4844381 DOI: 10.3390/plants2030530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
Calcium plays an important role in the regulation of several chloroplast processes. However, very little is still understood about the calcium fluxes or calcium-binding proteins present in plastids. Indeed, classical EF-hand containing calcium-binding proteins appears to be mostly absent from plastids. In the present study we analyzed the stroma fraction of Arabidopsis chloroplasts for the presence of novel calcium-binding proteins using 2D-PAGE separation followed by calcium overlay assay. A small acidic protein was identified by mass spectrometry analyses as the chloroplast protein CP12 and the ability of CP12 to bind calcium was confirmed with recombinant proteins. CP12 plays an important role in the regulation of the Calvin-Benson-Bassham Cycle participating in the assembly of a supramolecular complex between phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase, indicating that calcium signaling could play a role in regulating carbon fixation.
Collapse
|
5
|
Rocha AG, Vothknecht UC. The role of calcium in chloroplasts--an intriguing and unresolved puzzle. PROTOPLASMA 2012; 249:957-66. [PMID: 22227834 DOI: 10.1007/s00709-011-0373-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 05/24/2023]
Abstract
More than 70 years of studies have indicated that chloroplasts contain a significant amount of calcium, are a potential storage compartment for this ion, and might themselves be prone to calcium regulation. Many of these studies have been performed on the photosynthetic light reaction as well as CO(2) fixation via the Calvin-Benson-Bassham cycle, and they showed that calcium is required in several steps of these processes. Further studies have indicated that calcium is involved in other chloroplast functions that are not directly related to photosynthesis and that there is a calcium-dependent regulation similar to cytoplasmic calcium signal transduction. Nevertheless, the precise role that calcium has as a functional and regulatory component of chloroplast processes remains enigmatic. Calcium concentrations in different chloroplast subcompartments have been measured, but the extent and direction of intra-plastidal calcium fluxes or calcium transport into and from the cytosol are not yet very well understood. In this review we want to give an overview over the current knowledge on the relationship between chloroplasts and calcium and discuss questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Agostinho G Rocha
- Department of Biology I, Botany, LMU Munich, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
6
|
|
7
|
Raines CA, Lloyd JC, Willingham NM, Potts S, Dyer TA. cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:1053-9. [PMID: 1374332 DOI: 10.1111/j.1432-1033.1992.tb16873.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nucleotide sequence encoding the chloroplast enzyme, sedoheptulose-1,7-bisphosphatase [Sed(1,7)P2ase], was obtained from wheat cDNA and genomic clones. The transcribed region of the Sed(1,7)P2ase gene has eight exons (72-507 bp) and seven introns (85-626 bp) and encodes a precursor polypeptide of 393 amino acids. Comparison of the deduced amino acid sequence of Sed(1,7)P2ase with those of fructose-1,6-bisphosphatase [Fru(1,6)P2ase] enzymes from a variety of sources reveals 19% identity, rising to 42% if conservative changes are considered. Most importantly, the amino acid residues which form the active site of Fru(1,6)P2ase are highly conserved in the Sed(1,7)P2ase molecule, indicating a common catalytic mechanism. Interestingly, although the activities of both Sed(1,7)P2ase and chloroplast Fru(1,6)P2ase are modulated by light via the thioredoxin system, the amino acid sequence motif identified as having a role in this regulation in chloroplast Fru(1,6)P2ase is not found in the Sed(1,7)P2ase enzyme.
Collapse
Affiliation(s)
- C A Raines
- Biology Department, University of Essex, Colchester, England
| | | | | | | | | |
Collapse
|
8
|
Rault M, Gontero B, Ricard J. Thioredoxin activation of phosphoribulokinase in a chloroplast multi-enzyme complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:791-7. [PMID: 1851485 DOI: 10.1111/j.1432-1033.1991.tb15973.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activation process of spinach phosphoribulokinase by thioredoxin f has been studied with the enzyme in a free, isolated state, or integrated in a multi-enzyme complex. The time periods required for enzyme activation are always smaller and the maximal enzyme velocities are always greater when chloroplast phosphoribulokinase is included in the multi-enzyme complex than when it is in the isolated state. Comparative kinetic studies show that phosphoribulokinase extracted from the complex behaves exactly as in the isolated state. The reduced form of the kinase, whatever it has been included in the complex or isolated from the chloroplasts, are deactivated by oxidized thioredoxins. In the absence of thioredoxin f however, the reduced form of the isolated enzyme undergoes spontaneous oxidation whereas the reduced kinase included in the multi-enzyme complex is stable. 'Unspecific' proteins such as bovine serum albumin do not provide any protection of the kinase against autooxidation, whereas 'homologous' specific proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase dramatically decrease the rate of this autooxidation process. These results therefore support the view that interactions between phosphoribulokinase and the other components of the multi-enzyme complex play an important role in the modulation of the activity of this enzyme. The possible part of these interactions in the control of the Calvin cycle is discussed.
Collapse
Affiliation(s)
- M Rault
- Centre de Biochimie et de Biologie Moléculaire, Centre National de la Recherche Scientifique, Marseille, France
| | | | | |
Collapse
|
9
|
Raines CA, Lloyd JC, Dyer TA. Molecular biology of the C3 photosynthetic carbon reduction cycle. PHOTOSYNTHESIS RESEARCH 1991; 27:1-14. [PMID: 24414440 DOI: 10.1007/bf00029971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/1990] [Accepted: 09/30/1990] [Indexed: 06/03/2023]
Abstract
In recent years the enzymes of the C3 photosynthetic carbon reduction (PCR) cycle have been studied using the techniques of molecular biology. In this review we discuss the primary protein sequences and structural predictions that have been made for a number of these enzymes, which, with the input of crystallographic analysis, gives the opportunity to understand the mechanisms of enzyme activity.The genome organisation and gene structure of the PCR enzymes is another area which has recently expanded, and we discuss the regulation of the genes encoding these enzymes and the complex interaction of various factors which influence their expression.
Collapse
Affiliation(s)
- C A Raines
- Biology Department, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK
| | | | | |
Collapse
|
10
|
Schimkat D, Heineke D, Heldt HW. Regulation of sedoheptulose-1,7-bisphosphatase by sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts. PLANTA 1990; 181:97-103. [PMID: 24196680 DOI: 10.1007/bf00202330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1989] [Accepted: 11/18/1989] [Indexed: 06/02/2023]
Abstract
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg(2+)-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.
Collapse
Affiliation(s)
- D Schimkat
- Institut für Biochemie der Pflanze, Universität Göttingen, Untere Karspüle 2, D-3400, Göttingen, Germany
| | | | | |
Collapse
|
11
|
|
12
|
Cadet F, Meunier JC. pH and kinetic studies of chloroplast sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea). Biochem J 1988; 253:249-54. [PMID: 2844169 PMCID: PMC1149282 DOI: 10.1042/bj2530249] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this paper is to study some steady-state kinetic properties of sedoheptulose-1,7-bisphosphatase, its pH-dependence and the effect of a substrate analogue, fructose 2,6-bisphosphate. Studies were carried out with sedoheptulose 1,7-bisphosphate and with fructose 1,6-bisphosphate, an alternative substrate. The pK values are identical for both substrates, and fructose 2,6-bisphosphate behaves like a competitive inhibitor. These results suggest that there exists a unique active site for either sedoheptulose 1,7-bisphosphate or fructose 1,6-bisphosphate on the enzyme molecule. Increasing Mg2+ concentrations shifted the optimum pH. As for fructose-1,6-bisphosphatase, we believe that this shift is due to the neutralization of negative charges near the active centre [Cadet, Meunier & Ferté (1987) Eur. J. Biochem. 162, 393-398]. The free species of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate are not the usual substrates of enzyme, nor is Mg2+. But the kinetics relative to the (Mg2+-substrate4-)2- complex is not consistent with this complex being the substrate. An explanation of this discrepancy is proposed, involving both the negative charges near the active centre and the positive charges of Mg2+. The observed Vmax. of the reduced enzyme is 65% of the theoretical Vmax. for both substrates, but the observed Vmax. relative to sedoheptulose 1,7-bisphosphate is 3 times the one relative to fructose 1,6-bisphosphate. The specificity constant (kcat./Km), 1.62 x 10(6) M-1.s-1 with respect to sedoheptulose 1,7-bisphosphate compared with 5.5 x 10(4) M-1.s-1 with respect to fructose 1,6-bisphosphate, indicates that the enzyme specificity towards sedoheptulose 1,7-bisphosphate is high but not absolute.
Collapse
Affiliation(s)
- F Cadet
- Centre de Biotechnologie Agro-Industrielle, Institut National Agronomique Paris-Grignon, Thiverval-Grignon, France
| | | |
Collapse
|