1
|
Affiliation(s)
- Fabian Schnitter
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
- Institute for Advanced Study Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
2
|
Buljan VA, Holsinger RMD, Brown D, Bohorquez-Florez JJ, Hambly BD, Delikatny EJ, Ivanova EP, Banati RB. Spinodal decomposition and the emergence of dissipative transient periodic spatio-temporal patterns in acentrosomal microtubule multitudes of different morphology. CHAOS (WOODBURY, N.Y.) 2013; 23:023120. [PMID: 23822485 DOI: 10.1063/1.4807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have studied a spontaneous self-organization dynamics in a closed, dissipative (in terms of guansine 5'-triphosphate energy dissipation), reaction-diffusion system of acentrosomal microtubules (those nucleated and organized in the absence of a microtubule-organizing centre) multitude constituted of straight and curved acentrosomal microtubules, in highly crowded conditions, in vitro. Our data give experimental evidence that cross-diffusion in conjunction with excluded volume is the underlying mechanism on basis of which acentrosomal microtubule multitudes of different morphologies (straight and curved) undergo a spatial-temporal demix. Demix is constituted of a bifurcation process, manifested as a slow isothermal spinodal decomposition, and a dissipative process of transient periodic spatio-temporal pattern formation. While spinodal decomposition is an energy independent process, transient periodic spatio-temporal pattern formation is accompanied by energy dissipative process. Accordingly, we have determined that the critical threshold for slow, isothermal spinodal decomposition is 1.0 ± 0.05 mg/ml of microtubule protein concentration. We also found that periodic spacing of transient periodic spatio-temporal patterns was, in the overall, increasing versus time. For illustration, we found that a periodic spacing of the same pattern was 0.375 ± 0.036 mm, at 36 °C, at 155th min, while it was 0.540 ± 0.041 mm at 31 °C, and at 275th min after microtubule assembly started. The lifetime of transient periodic spatio-temporal patterns spans from half an hour to two hours approximately. The emergence of conditions of macroscopic symmetry breaking (that occur due to cross-diffusion in conjunction with excluded volume) may have more general but critical importance in morphological pattern development in complex, dissipative, but open cellular systems.
Collapse
Affiliation(s)
- Vlado A Buljan
- Brain and Mind Research Institute, Sydney Medical School, The University of Sydney, Sydney NSW 2050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Buljan VA, Damian Holsinger RM, Hambly BD, Banati RB, Ivanova EP. Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore-microtubule interface. J Biol Phys 2012; 39:81-98. [PMID: 23860835 DOI: 10.1007/s10867-012-9287-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/07/2012] [Indexed: 11/24/2022] Open
Abstract
In order to quantify the intrinsic dynamics associated with the tip of a GTP-cap under semi-confined conditions, such as those within a neuronal cone and at a kinetochore-microtubule interface, we propose a novel quantitative concept of critical nano local GTP-tubulin concentration (CNLC). A simulation of a rate constant of GTP-tubulin hydrolysis, under varying conditions based on this concept, generates results in the range of 0-420 s(-1). These results are in agreement with published experimental data, validating our model. The major outcome of this model is the prediction of 11 random and distinct outbursts of GTP hydrolysis per single layer of a GTP-cap. GTP hydrolysis is accompanied by an energy release and the formation of discrete expanding zones, built by less-stable, skewed GDP-tubulin subunits. We suggest that the front of these expanding zones within the walls of the microtubule represent soliton-like movements of local deformation triggered by energy released from an outburst of hydrolysis. We propose that these solitons might be helpful in addressing a long-standing question relating to the mechanism underlying how GTP-tubulin hydrolysis controls dynamic instability. This result strongly supports the prediction that large conformational movements in tubulin subunits, termed dynamic transitions, occur as a result of the conversion of chemical energy that is triggered by GTP hydrolysis (Satarić et al., Electromagn Biol Med 24:255-264, 2005). Although simple, the concept of CNLC enables the formulation of a rationale to explain the intrinsic nature of the "push-and-pull" mechanism associated with a kinetochore-microtubule complex. In addition, the capacity of the microtubule wall to produce and mediate localized spatio-temporal excitations, i.e., soliton-like bursts of energy coupled with an abundance of microtubules in dendritic spines supports the hypothesis that microtubule dynamics may underlie neural information processing including neurocomputation (Hameroff, J Biol Phys 36:71-93, 2010; Hameroff, Cognit Sci 31:1035-1045, 2007; Hameroff and Watt, J Theor Biol 98:549-561, 1982).
Collapse
Affiliation(s)
- Vlado A Buljan
- Brain and Mind Research Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia.
| | | | | | | | | |
Collapse
|
4
|
Margolin G, Gregoretti IV, Cickovski TM, Li C, Shi W, Alber MS, Goodson HV. The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol Biol Cell 2011; 23:642-56. [PMID: 22190741 PMCID: PMC3279392 DOI: 10.1091/mbc.e11-08-0688] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ETOC: The behavior of a dimer-scale computational model predicts that short interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks govern both catastrophe and rescue. Microtubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers experimentally relevant spans of time. It allows us to correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue. The model's behavior suggests that several commonly held assumptions about MT dynamics should be reconsidered. Moreover, it predicts that short, interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks influence both catastrophe and rescue. We conclude that experimentally observed microtubule behavior can best be explained by a “stochastic cap” model in which tubulin subunits hydrolyze GTP according to a first-order reaction after they are incorporated into the lattice; catastrophe and rescue result from stochastic fluctuations in the size, shape, and extent of lateral bonding of the cap.
Collapse
Affiliation(s)
- Gennady Margolin
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Symmons MF, Martin SR, Bayley PM. Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime. J Cell Sci 1996; 109 ( Pt 11):2755-66. [PMID: 8937993 DOI: 10.1242/jcs.109.11.2755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule assembly kinetics have been studied quantitatively under solution conditions supporting microtubule dynamic instability. Purified GTP-tubulin (Tu-GTP) and covalently cross-linked short microtubule seeds (EGS-seeds; Koshland et al. (1988) Nature 331, 499) were used with and without biotinylation. Under sub-critical concentration conditions ([Tu-GTP] < 5.3 microM), significant microtubule growth of limited length was observed on a proportion of the EGS-seeds by immuno-electron microscopy. A sensitive fluorescence assay for microtubule GDP production was developed for parallel assessment of GTP utilisation. This revealed a correlation between the detected microtubule growth and the production of tubulin-GDP, deriving from the shortening phase of the dynamic microtubules. This correlation was confirmed by the action of nocodazole, a specific inhibitor of microtubule assembly, that was found to abolish the GDP release. The variation of the GDP release with tubulin concentration (Jh(c) plot) was determined below the critical concentration (Cc). The GDP production observed was consistent with the elongation of the observed seeded microtubules with an apparent rate constant of 1.5 × 10(6) M-1 second-1 above a threshold of approximately 1 microM tubulin. The form of this Jh(c) plot for elongation below Cc is reproduced by the Lateral Cap model for microtubule dynamic instability adapted for seeded assembly. The behaviour of the system is contrasted with that previously studied in the absence of detectable microtubule elongation (Caplow and Shanks (1990) J. Biol. Chem. 265, 8935–8941). The approach provides a means of monitoring microtubule dynamics at concentrations inaccessible to optical microscopy, and shows that essentially the same dynamic mechanisms apply at all concentrations. Numerical simulation of the subcritical concentration regime shows dynamic growth features applicable to the initiation of microtubule growth in vivo.
Collapse
Affiliation(s)
- M F Symmons
- Division of Physical Biochemistry, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
6
|
Abstract
BACKGROUND Microtubules polymerized from pure tubulin show the unusual property of dynamic instability, in which both growing and shrinking polymers coexist at steady state. Shortly after its addition to a microtubule end, a tubulin subunit hydrolyzes its bound GTP. Studies with non-hydrolyzable analogs have shown that GTP hydrolysis is not required for microtubule assembly, but is essential for generating a dynamic polymer, in which the subunits at the growing tip have bound GTP and those in the bulk of the polymer have bound GDP. It has been suggested that loss of the 'GTP cap' through dissociation or hydrolysis exposes the unstable GDP core, leading to rapid depolymerization. However, evidence for a stabilizing cap has been very difficult to obtain. RESULTS We developed an assay to determine the minimum GTP cap necessary to stabilize a microtubule from shrinking. Assembly of a small number of subunits containing a slowly hydrolyzed GTP analog (GMPCPP) onto the end of dynamic microtubules stabilized the polymer to dilution. By labeling the subunits with rhodamine, we measured the size of the cap and found that as few as 40 subunits were sufficient to stabilize a microtubule. CONCLUSIONS On the basis of statistical arguments, in which the proportion of stabilized microtubules is compared to the probability that when 40 GMPCPP-tubulin subunits have polymerized onto a microtubule end, all protofilaments have added at least one GMPCPP-tubulin subunit, our measurements of cap size support a model in which a single GTP subunit at the end of each of the 13 protofilaments of a microtubule is sufficient for stabilization. Depolymerization of a microtubule may be initiated by an exposed tubulin-GDP subunit at even a single position. These results have implications for the structure of microtubules and their means of regulation.
Collapse
Affiliation(s)
- D N Drechsel
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
7
|
Davis A, Sage CR, Wilson L, Farrell KW. Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry 1993; 32:8823-35. [PMID: 8364030 DOI: 10.1021/bi00085a013] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a method for isolating milligram quantities of assembly-competent tubulin from the budding yeast Saccharomyces cerevisiae. The tubulin is > 95% purified and free of contaminating enzyme activities. As a result, it has been possible to determine the yeast tubulin equilibrium-binding constant for Mg-GTP and the tubulin GTPase activity under nonassembling and assembling conditions. We also determined the critical concentration for yeast tubulin polymerization and found it to be significantly lower than that for bovine brain tubulin under identical conditions. Similarly, the dynamic properties both of individual yeast microtubules and of bulk microtubule suspensions were significantly different from those of bovine brain microtubules free of microtubule-associated proteins. The data suggest that the properties of the yeast tubulin may reflect the particular functional requirements of the yeast cell. With this method, it is now possible to introduce any desired tubulin gene mutation into the budding yeast and correlate the phenotypic effects of the mutation in cells with the effects of the mutation on the biochemical and polymerization properties of the tubulin.
Collapse
Affiliation(s)
- A Davis
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | | | |
Collapse
|
8
|
Burns RG, Farrell KW, Surridge CD. Should the tubulins be members of the GTPase superfamily? CIBA FOUNDATION SYMPOSIUM 1993; 176:248-267. [PMID: 8299423 DOI: 10.1002/9780470514450.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The beta-subunit of the alpha/beta tubulin heterodimer resembles other members of the GTPase superfamily in that: it binds GTP, the GTP is hydrolysed to GDP on microtubule assembly and this induces a conformational change; it exhibits a similar nucleotide stereospecificity; aluminium and beryllium fluorides inhibit this hydrolysis-dependent conformational change; and beta-tubulin contains peptides which are similar to the consensus motifs characteristic of the GTPase superfamily proteins. By contrast, UV photo-cross-linking and other binding studies have identified peptides which may contribute to the GTP-binding site but which are absent from the GTPase superfamily proteins. We suggest that beta-tubulin has a 'dual personality', with the characteristics of the GTP-binding site depending upon the precise conformation of the protein and upon whether the experimental assays probe nucleotide binding or the hydrolytic mechanism. We suggest that the hydrolytic mechanism of beta-tubulin resembles that of the other members of the GTPase superfamily, although the differences within the consensus motifs dictate that the architecture of the GTP pocket cannot be identical.
Collapse
Affiliation(s)
- R G Burns
- Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
9
|
Carlier MF. Nucleotide hydrolysis regulates the dynamics of actin filaments and microtubules. Philos Trans R Soc Lond B Biol Sci 1992; 336:93-7. [PMID: 1351301 DOI: 10.1098/rstb.1992.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Actin filaments and microtubules are major dynamic components of the cytoskeleton of eukaryotic cells. Assembly of these polymers from monomeric actin or tubulin occurs with expenditure of energy, because ATP (or GTP) tightly bound to actin (or tubulin) is irreversibly hydrolysed during polymerization. Therefore, actin filaments an microtubules are dissipative structures. Our purpose has been to understand how the dissipation of chemical energy perturbs the laws of reversible helical polymerization defined by Oosawa, and affects the dynamics of these polymers. A kinetic study has shown that nucleotide is hydrolysed on the polymer within at least two steps consecutive to the incorporation of the monomer: cleavage of the gamma-phosphoester bond followed by the slower release of Pi; only the second reaction appears reversible. Pi release, and not cleavage of the gamma-phosphate, is linked to the destabilization of protein-protein interactions in the polymer, and therefore plays the role of a conformational switch. The dynamic properties of the polymer in the NTP- and NDP-Pi intermediate states of the assembly process have been investigated using non-hydrolysable analogues of nucleotides and structural analogues of Pi, AlF4- and (BeF3-, H2O). Because nucleotide hydrolysis is uncoupled from polymerization, actin filaments and microtubules grow with a 'cap' of terminal NTP- and NDP-Pi-subunits that interact strongly, and prevent the rapid depolymerization of the unstable core of the polymer formed of NDP-subunits. The fact that the dynamic properties of the polymer are affected by bound nucleotide results in a nonlinear dependence of the rate of elongation on monomer concentration.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M F Carlier
- Laboratoire d'Enzymologie, C.N.R.S., Gif-sur-Yvette, France
| |
Collapse
|
10
|
Burns RG. Assembly of chick brain MAP2-tubulin microtubule protein. Characterization of the protein and the MAP2-dependent addition of tubulin dimers. Biochem J 1991; 277 ( Pt 1):231-8. [PMID: 1854335 PMCID: PMC1151214 DOI: 10.1042/bj2770231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The principle proteins present in twice-cycled chick brain microtubule protein were characterized. The protein consists of a stoichiometric mixture of MAP2 and tubulin, together with a number of minor components. Its composition remains unaltered after a third cycle of assembly in a buffer supplemented with 67 mM-NaCl, with the exception of the phosphorylation of MAP2 to a low level (congruent to 1 mol.mol-1). The inclusion of 67 mM-NaCl dissociates the MAP2-tubulin oligomers, and restricts the assembly to the MAP2-dependent addition and loss of tubulin dimers, such that the assembly kinetics approximate to a simple pseudo-first-order reaction. The assembled microtubules exhibit dynamic instability, with no evidence for end-to-end annealing.
Collapse
Affiliation(s)
- R G Burns
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, U.K
| |
Collapse
|
11
|
Symmons MF, Burns RG. Assembly of chick brain MAP2-tubulin microtubule protein. Analysis of tubulin subunit flux rates by immunofluorescence microscopy. Biochem J 1991; 277 ( Pt 1):245-53. [PMID: 1854337 PMCID: PMC1151216 DOI: 10.1042/bj2770245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A filter-based immunofluorescence-microscopy method for obtaining microtubule lengths has been developed and evaluated. Kinetic constants and mean lengths obtained show close agreement with those obtained by complementary methods applied to chick brain MAP2-tubulin microtubule protein in NaCl-supplemented buffer. The filter-based method has been used to estimate tubulin subunit flux (Jon) resulting from isothermal dilution of microtubule populations to various free tubulin concentrations, (c). This experimental Jon(c) plot is significantly different from that predicted by a variety of theoretical models, but is consistent with a 'lateral cap' model of dynamic instability [Bayley, Schilstra & Martin (1990) J. Cell. Sci. 95, 33-48] adapted to accommodate the observed vectorial GTP hydrolysis.
Collapse
Affiliation(s)
- M F Symmons
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, U.K
| | | |
Collapse
|
12
|
Burns RG. Alpha-, beta-, and gamma-tubulins: sequence comparisons and structural constraints. CELL MOTILITY AND THE CYTOSKELETON 1991; 20:181-9. [PMID: 1773446 DOI: 10.1002/cm.970200302] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Comparison of congruent to 160 alpha-, beta-, and gamma-tubulins, and excluding the highly divergent C-terminal peptide, indicates that the three subclasses have similar tertiary structures. Conserved sequences within or between the subclasses have been identified, together with the locations of known epitopes, chemical modifications, and mutations. Evidence is also reviewed concerning the identity of the GTP-binding sites, about which residues are exposed in the assembled microtubule and at subunit:subunit interfaces. These characteristics constrain the possible tertiary structure of the tubulin subunit.
Collapse
Affiliation(s)
- R G Burns
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
13
|
Idriss H, Stammers DK, Ross CK, Burns RG. The dynamic instability of microtubules is not modulated by alpha-tubulin tyrosinylation. CELL MOTILITY AND THE CYTOSKELETON 1991; 20:30-7. [PMID: 1756577 DOI: 10.1002/cm.970200104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tyrosinylation of chick brain alpha-tubulin and the effects of the tyrosinylation status on the assembly and dynamic instability of chick brain MAP2:tubulin microtubule protein have been examined. Each of the eight major alpha-isotypes can be tyrosinylated in vitro, irrespective of whether a C-terminal tyrosine is genetically encoded. The extent of tyrosinylation is however limited to congruent to 0.3 mol.mol-1. The tyrosinylation status (0 vs. 0.3 mol.mol-1) has no effect on either the assembly kinetics of chick brain microtubule protein or on the rate of length redistribution following assembly and shearing. It is therefore unlikely that the tyrosinylation status directly affects the intrinsic stability of assembled microtubules since the rate of length redistribution is both a sensitive assay and a function of the kinetic parameters governing dynamic instability.
Collapse
Affiliation(s)
- H Idriss
- Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
Interest in phosphoinositide 3-kinase (PI 3-kinase) has been fuelled by its identification as a major phosphotyrosyl protein detected in cells following growth factor stimulation and oncogenic transformation. It is found complexed with activated growth factor receptors and non-receptor tyrosine kinases, thus suggesting that it participates in the signal transduction pathways initiated by the activation of tyrosine kinases. PI 3-kinase phosphorylates the 3-position in the inositol ring of the well known inositol phospholipids in vitro giving phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate [PtdIns3P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3], respectively. The cellular levels of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 rapidly increase in circumstances where PI 3-kinase becomes complexed with tyrosine kinases. Accumulation of the same lipids also occurs in platelets and neutrophils following stimulation of G-protein linked alpha-thrombin and chemotactic peptide receptors, respectively, leading to speculation that one or both of these lipids is a new second messenger whose function is not yet known. This review brings together recent information on the isolation, characterization and regulation of PI 3-kinase, the cellular occurrence of 3-phosphorylated inositol phospholipids and possible functions of the PI 3-kinase pathway in cell signalling.
Collapse
Affiliation(s)
- C P Downes
- Department Biochemistry, University of Dundee, U.K
| | | |
Collapse
|