1
|
Rahman MS, Billah MM, Rangel V, Cantu E. Elevated temperature triggers increase in global DNA methylation, 5-methylcytosine expression levels, apoptosis and NOx levels in the gonads of Atlantic sea urchin. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110899. [PMID: 37673203 DOI: 10.1016/j.cbpb.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Global warming is one of the greatest threats to living organisms. Among them, marine invertebrates are severely impacted on reproductive fitness by rising seawater surface temperatures due to climate change (e.g., massive heat waves). In this study, we used highly sensitive radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), in situ TUNEL assay, luminescence assay, and colorimetric assay techniques to investigate the impacts of high temperatures on global DNA methylation, cellular apoptosis, and nitrative stress in gonads of Atlantic sea urchin (Arbacia punctulata, a commercially important species). Young adult sea urchins were exposed to 24, 28, and 32 °C for one week in a controlled laboratory setting. High temperatures (28 and 32 °C) markedly increased global DNA methylation (around 1.1-1.5-fold in testes and ~ 1.7-fold in ovaries) and 5-methylcytosine (5-mC) levels in gonads (around 2.7- to ~5.1-fold in ovaries and ~ 3.5- to ~6.2-fold in testes) compared with controls (24 °C). The number of apoptotic nuclei in gonads was much higher in high-temperature groups. The caspase activity also increased significantly (P < 0.05) in gonads in high-temperature groups. Nitrate/nitrites (NOx, a biomarker of reactive nitrogen species) levels were increased around 2.6- to ~5.2-fold in testes and ~ 1.9- to ~3.8-fold in ovaries in high-temperature groups. Collectively, these outcomes indicate that high temperatures drastically induce global DNA methylation, 5-mC expression levels, cellular apoptosis, and NOx levels in the gonads of Atlantic sea urchin.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Victor Rangel
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Esmirna Cantu
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
2
|
Abstract
A number of xenobiotics require redox reactions to form the reactive intermediates involved in the ultimate toxic events (e.g., adduct formation). The same mechanisms lead to the formation of reactive oxygen species (ROS), which can themselves exert direct toxicity including, e.g., DNA oxidative damage or glutathione depletion. The occurence of both mechanistic features in xenobiotic activation and toxicity may raise some difficulties in ascertaining the respective roles of reactive intermediates versus ROS-related mechnisms. An example is provided by the toxicity mechanisms of mitomycin C (MMC) and diepoxybutane (DEB), which are commonly referred to as 'cross-linkers'. Their toxic actions, however, are well-known to be modulated via redox parameters, such as oxygen tension, antioxidants levels, or thioredoxin overexpression. The diagnostic assessment of Fanconi's anaemia (FA) relies on MMC and DEB sensitivity, which is usually referred to as 'cross-linker sensitivity'; thus the redox-dependent toxicities of MMC and DEB may have direct implications for the definition of FA phenotype. Another major aspect in ROS formation relies on the extensive evidence pointing to the requirement for oxidative, as well as nitrosative activities in triggering a number of key events in cell division and differentiation, and in early embryogenesis. In turn, antioxidants that may prevent ROS-associated cellular damage in adult cells may prove to exert adverse or fatal outcomes when administered in early life stages. The overall information available on xenobiotic redox biotransformation and on the physiopathological roles of ROS points to the need of addressing ad hoc studies that should take into account the multiplicity of mechanistic events involved.
Collapse
Affiliation(s)
- G Pagano
- Italian National Cancer Institute, G Pascale Foundation, Naples, Italy.
| |
Collapse
|
3
|
Abstract
Schistosoma mansoni genomic DNA from male and female adult worms was subjected to restriction by the isoschizomeric endonucleases HpaII and MspI, which display different sensitivities with respect to cytosine methylation. The digested DNA was hybridized with 13 S. mansoni probes. Southern blot analysis showed that there were no observable differences in the restriction patterns of the two isoschizomers and that the patterns were identical in male and female parasites. Adenine methylation was also ruled out since no differences were observed with DpnI, Sau3A1, or MboI restriction enzymes. The methylation-dependent restriction endonuclease McrBC, which cleaves DNA containing methylcytosine and will not cleave unmethylated DNA, did not digest S. mansoni genomic DNA. These results demonstrate that the genome of adult S. mansoni is not methylated.
Collapse
Affiliation(s)
- M R Fantappié
- Departamento de Bioquímica Médica ICB/CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão CEP 21941-590, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
4
|
del Gaudio R, Di Giaimo R, Geraci G. Genome methylation of the marine annelid worm Chaetopterus variopedatus: methylation of a CpG in an expressed H1 histone gene. FEBS Lett 1997; 417:48-52. [PMID: 9395072 DOI: 10.1016/s0014-5793(97)01262-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrolysis by methylation-dependent restriction enzymes shows that the genomic DNA of the polychaete annelid worm Chaetopterus variopedatus is methylated. Electrophoretic analyses of the digestion products indicate that the degree of methylation is lower in adult tissues than in sperm and embryonic DNA. 5-Methylcytosine was identified by HPLC, absorption spectroscopy and mass spectrometry analyses of free bases obtained by acid hydrolysis of the DNA. An average value of 1.6% methylated cytosines was determined in sperm DNA. Partial methylation was also found in an actively expressed H1 histone gene. This is the first time that genomic DNA methylation is demonstrated to occur in a worm.
Collapse
Affiliation(s)
- R del Gaudio
- Department of Genetics, General and Molecular Biology, University of Naples Federico II, Italy
| | | | | |
Collapse
|
5
|
Pagano G, Bonassi S, De Biase A, Degan P, Deeva IB, Doronin YK, Iaccarino M, Oral R, Warnau M, Korkina LG. L-methionine induces stage-dependent changes of differentiation and oxidative activity in sea urchin embryogenesis. PHARMACOLOGY & TOXICOLOGY 1997; 81:134-43. [PMID: 9335071 DOI: 10.1111/j.1600-0773.1997.tb00043.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was to investigate developmental toxicity of some selected low molecular weight antioxidants, by utilising sea urchin embryos and gametes as model system. Sea urchin embryos or sperm were exposed at different developmental stages to L-methionine or some selected low molecular weight antioxidants: a) N-acetylcysteine; b) L-carnosine; c) L-homocarnosine, and d) L-anserine. L-methionine displayed developmental toxicity at levels > or = 10(-5) M, whereas the other agents tested were mostly active at levels > or = 10(-4) M. When embryos were exposed to 10(-4) M L-methionine or N-acetylcysteine at different developmental stages, the most severe effects were exerted by early exposures (0 to 2 hr after fertilisation), whereas later exposures turned to lesser or no effects. Cytogenetic analysis of L-methionine-exposed embryos showed a significant mitogenic effect and increase of mitotic aberrations. Fertilisation success was decreased by L-methionine (10(-6) M to 10(-3) M) added at the moment of fertilisation, with increasing developmental and cytogenetic abnormalities in the offspring. The formation of reactive oxygen species in embryos and gametes was determined by: a) analysing the DNA oxidative product, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and b) luminol-dependent chemiluminescence. The results showed that: 1) 8-OHdG levels were increased during embryogenesis; 2) fertilisation was associated with a double-wave luminol-dependent chemiluminescence emission; 3) luminol-dependent chemiluminescence was maximal in cleavage, declining down to zero in plutei, and 4) an embryotoxic L-methionine or N-acetylcysteine level (10(-4) M) turned to a decrease in reactive oxygen species formation. The data suggest that L-methionine- or N-acetylcysteine-induced developmental toxicity is confined to early stages. A role for oxidative activity is suggested in modulating cell differentiation and embryogenesis, consistent with antioxidant-induced damage to early life stages.
Collapse
Affiliation(s)
- G Pagano
- National Cancer Institute, G. Pascale Foundation, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 1997; 17:1469-75. [PMID: 9032274 PMCID: PMC231872 DOI: 10.1128/mcb.17.3.1469] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Patterns of DNA methylation in animal genomes are known to vary from an apparent absence of modified bases, via methylation of a minor fraction of the genome, to genome-wide methylation. Representative genomes from 10 invertebrate phyla comprise predominantly nonmethylated DNA and (usually but not always) a minor fraction of methylated DNA. In contrast, all 27 vertebrate genomes that have been examined display genome-wide methylation. Our studies of chordate genomes suggest that the transition from fractional to global methylation occurred close to the origin of vertebrates, as amphioxus has a typically invertebrate methylation pattern whereas primitive vertebrates (hagfish and lamprey) have patterns that are typical of vertebrates. Surprisingly, methylation of genes preceded this transition, as many invertebrate genes have turned out to be heavily methylated. Methylation does not preferentially affect genes whose expression is highly regulated, as several housekeeping genes are found in the heavily methylated fraction whereas several genes expressed in a tissue-specific manner are in the nonmethylated fraction.
Collapse
Affiliation(s)
- S Tweedie
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Suzuki K, Nagao K, Tokunaga J, Katayama N, Uyeda M. Inhibition of DNA methyltransferase by microbial inhibitors and fatty acids. JOURNAL OF ENZYME INHIBITION 1996; 10:271-280. [PMID: 8872747 DOI: 10.3109/14756369609036534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Streptomyces sp. strain No. 560 produces four kinds of DNA methyltransferase inhibitors in the culture filtrate. One of them, DMI-4 was distinguished from DMI-1, -2 and -3 previously reported with respect to certain properties, DMI-4 is considered to be a triglyceride consisting of the fatty acids anteisopentadecanoic acid (C15:0), isopalmitic acid (C16:0) and isostearic acid (C18:0) from the results of gas chromatography analysis. Since DMI-4 contains three molecules of fatty acid, and the previously reported DMI-1, 8-methylpentadecanoic acid, is analogous to a fatty acid, the inhibitory activity has been examined of various fatty acids and their methyl esters against Eco RI DNA methyltransferase (M. Eco RI). Oleic acid (C18:1) was found to be a potent inhibiton of M. Eco RI. The inhibitory activity of oleic acid was shown to be pH- and temperature-dependent and inhibited M. Eco RI in a noncompetitive manner with respect to DNA or S-adenosylmethionine (SAM). The number of carbon atoms and double bonds in the fatty acid molecule affected the inhibitory activity, but their methyl esters were not inhibitors. Our results suggest that the length of the carbon chain, the number of double bonds and the presence of a carboxyl group and branched methyl group in the fatty acid molecule may play an important role in the inhibition of DNA methyltransferase.
Collapse
Affiliation(s)
- K Suzuki
- Laboratory Medicinal Microbiology, Faculty of Pharmaceutical Sciences, Kumamoto University, Japan
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Tosi L, Aniello F, Geraci G, Branno M. DNA methyltransferase activity in the early stages of a sea urchin embryo. Evidence of differential control. FEBS Lett 1995; 361:115-7. [PMID: 7890028 DOI: 10.1016/0014-5793(95)00160-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The specific activity of DNA methyltransferase increases in the nuclei of Sphaerechinus granularis sea urchin embryos at increasing stages of development. The activity reaches maximal value at about 20 h of growth, when embryos are at the mesenchyme blastula stage, then abruptly decreases and is essentially zero at about 35 h of development, when embryos are at the early gastrula stage. Both the increase and the drop of the activity are faster than embryonic cell duplication indicating that the enzyme is under strict control during development and that, in the more advanced embryo, a mechanism is activated to specifically block its activity.
Collapse
Affiliation(s)
- L Tosi
- Laboratory of Biochemistry and Molecular Biology, Zoological Station A. Dohrn, Naples, Italy
| | | | | | | |
Collapse
|
10
|
López-León MD, Cabrero J, Camacho JPM. Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity (Edinb) 1995. [DOI: 10.1038/hdy.1995.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Fronk J, Magiera R. DNA methylation during differentiation of a lower eukaryote, Physarum polycephalum. Biochem J 1994; 304 ( Pt 1):101-4. [PMID: 7998920 PMCID: PMC1137458 DOI: 10.1042/bj3040101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Starvation-induced differentiation of the slime mould Physarum polycephalum is accompanied by continuous methylation of DNA. No stable changes in the overall level of DNA methylation are evident, but a gene known to be transcribed specifically during differentiation is subject to increased methylation. Inhibitors of DNA methylation preclude differentiation of P. polycephalum, although they are only marginally inhibitory to normal growth. Taken together these results indicate that methylation of DNA is involved in differentiation of this lower eukaryote.
Collapse
Affiliation(s)
- J Fronk
- Institute of Biochemistry, Warsaw University, Poland
| | | |
Collapse
|