1
|
Kalev-Zylinska ML, Morel-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova AY. Ionotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets 2020; 32:998-1008. [PMID: 33284715 DOI: 10.1080/09537104.2020.1852542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), kainate receptors (KAR), and N-methyl-D-aspartate receptors (NMDAR). All function as cation channels; AMPAR and KAR are more permeable to sodium and NMDAR to calcium ions. Compared to the brain, receptor assemblies in platelets are unusual, suggesting distinctive functionalities.There is convincing evidence that AMPAR and KAR amplify platelet function and thrombus formation in vitro and in vivo. Transgenic mice lacking GluA1 and GluK2 (AMPAR and KAR subunits, respectively) have longer bleeding times and prolonged time to thrombosis in an arterial model. In humans, rs465566 KAR gene polymorphism associates with altered in vitro platelet responses suggesting enhanced aspirin effect. The NMDAR contribution to platelet function is less well defined. NMDA at low concentrations (≤10 μM) inhibits platelet aggregation and high concentrations (≥100 μM) have no effect. However, open NMDAR channel blockers interfere with platelet activation and aggregation induced by other agonists in vitro; anti-GluN1 antibodies interfere with thrombus formation under high shear rates ex vivo; and rats vaccinated with GluN1 develop iron deficiency anemia suggestive of mild chronic bleeding. In this review, we summarize data on glutamate receptors in platelets and propose a unifying model that reconciles some of the opposing effects observed.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - James I Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anna Y Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
Colic L, Woelfer M, Colic M, Leutritz AL, Liebe T, Fensky L, Sen ZD, Li M, Hoffmann J, Kretzschmar MA, Isermann B, Walter M. Delayed increase of thrombocyte levels after a single sub-anesthetic dose of ketamine - A randomized trial. Eur Neuropsychopharmacol 2018; 28:701-709. [PMID: 29699723 DOI: 10.1016/j.euroneuro.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 12/25/2022]
Abstract
Recently, ketamine has been investigated as a potential antidepressant option for treatment resistant depression. Unlike traditional drugs, it yields immediate effects, most likely via increased glutamatergic transmission and synaptic plasticity. However, ketamine administration in humans is systemic and its long-term impact on blood parameters has not yet been described in clinical studies. Here we investigated potential sustained effects of ketamine administration (0.5 mg/kg ketamine racemate) on hematological and biochemical values in plasma and serum in a randomized double-blinded study. 80 healthy young participants were included and whole blood samples were collected 5 days before, and 14 days after the infusion. To assess the group effect, repeated measure analyses of co-variance (rmANCOVA) were conducted for the following blood parameters: levels of sodium, potassium, calcium, hemoglobin and number of erythrocytes, lymphocytes, and thrombocytes. RmANCOVA revealed a significant time by treatment effect on thrombocyte levels (F1, 74 = 13.54, p < 0.001, eta = 0.155), driven by an increase in the ketamine group (paired t-test, t = -3.51, df = 38, p = 0.001). Specificity of thrombocyte effect was confirmed by logistic regression, and in addition, no other coagulation parameters showed significant interaction. Moreover, the relative increase in the ketamine group was stable across sexes and not predicted by age, BMI, smoking, alcohol or drug use, and contraception. Our results describe aftereffects of sub-anesthetic ketamine administration on blood coagulation parameters, which should be considered especially when targeting psychiatric populations with relevant clinical comorbidities.
Collapse
Affiliation(s)
- Lejla Colic
- Clinical Affective Neuroimaging Laboratory, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, Germany; Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Brain Connectivity Laboratory, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
| | - Merima Colic
- Department of Laboratory Diagnostics, Children's Hospital Zagreb, Zagreb, Croatia
| | - Anna Linda Leutritz
- Clinical Affective Neuroimaging Laboratory, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Liebe
- Clinical Affective Neuroimaging Laboratory, Germany
| | - Luisa Fensky
- Clinical Affective Neuroimaging Laboratory, Germany; Translational Psychiatry, Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Zumrut Duygu Sen
- Clinical Affective Neuroimaging Laboratory, Germany; Translational Psychiatry, Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Juliane Hoffmann
- Institute for Clinical chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Moritz A Kretzschmar
- Department of Anaesthesiology and Intensive Care Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute for Clinical chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Translational Psychiatry, Department of Psychiatry, University of Tübingen, Tübingen, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
3
|
Kalev-Zylinska ML, Green TN, Morel-Kopp MC, Sun PP, Park YE, Lasham A, During MJ, Ward CM. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Thromb Res 2014; 133:837-47. [PMID: 24593912 DOI: 10.1016/j.thromres.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glutamate is stored in platelet dense granules and large amounts (>400 μM) are released during thrombus formation. N-methyl-d-aspartate glutamate receptors (NMDARs) have been shown in platelets but their roles are unclear. MATERIALS AND METHODS Platelet activation indices (CD62P expression and PAC-1 binding) and platelet aggregation were tested in the presence of well-characterized agonists (glutamate, NMDA, glycine) and antagonists (MK-801, memantine, AP5) of neuronal NMDARs. Expression of NMDAR subunits in platelets was determined. RESULTS NMDAR agonists facilitated and NMDAR antagonists inhibited platelet activation and aggregation. Low concentrations (100 μM) of MK-801 and memantine reduced adrenaline-induced CD62P expression by 47 ± 5 and 42 ± 3%, respectively, and inhibited adrenaline-induced platelet aggregation by 17 ± 6 and 25 ± 5%, respectively (P<0.05). AP5 caused less inhibition of platelet function, requiring concentrations of at least 250 μM to inhibit aggregation. NMDAR agonists did not aggregate platelets by themselves but enhanced aggregation initiated by low concentrations of ADP. Exogenous glutamate helped reverse inhibition of platelet aggregation by riluzole (inhibitor of glutamate release). Compared with seven possible NMDAR subunits in neurons, human platelets contained four: GluN1, GluN2A, GluN2D and GluN3A, a combination rarely seen in neurons. The presence of NMDAR transcripts in platelets implied platelet ability to regulate NMDAR expression presumably 'on demand'. Flow cytometry and electron microscopy demonstrated that in non-activated platelets, NMDAR subunits were contained inside platelets but relocated onto platelet blebs, filopodia and microparticles after platelet activation. CONCLUSIONS Our results support an active role for NMDARs in platelets, in a process that involves activation-dependent receptor relocation towards the platelet surface.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; LabPlus Haematology, Auckland District Health Board, Auckland, New Zealand.
| | - Taryn N Green
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Paul P Sun
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Young-Eun Park
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Annette Lasham
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Matthew J During
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Departments of Molecular Virology, Immunology and Medical Genetics, Neuroscience and Neurological Surgery, Ohio State University, Columbus, OH, USA
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Expression of a Functional N-Methyl-d-Aspartate–Type Glutamate Receptor by Bone Marrow Megakaryocytes. Blood 1999. [DOI: 10.1182/blood.v93.9.2876] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBetter understanding of hemostasis will be possible by the identification of new lineage-specific stimuli that regulate platelet formation. We describe a novel functional megakaryocyte receptor that belongs to a family of ionotropic glutamate receptors of theN-methyl-d-aspartate (NMDA) subtype responsible for synaptic neurotransmission in the central nervous system (CNS). Northern blotting and reverse-transcriptase polymerase chain reaction (RT-PCR) studies identified expression of NMDAR1 and NMDAR2D type subunit mRNA in rat marrow, human megakaryocytes, and MEG-01 clonal megakaryoblastic cells. Immunohistochemistry and in vivo autoradiographic binding of the NMDA receptor-specific antagonist MK-801 confirmed that megakaryocytes expressed open channel-forming NMDA receptors in vivo. Western blots indicated that megakaryocyte NMDAR1 was either unglycosylated or only glycosylated to low levels, and of identical size to CNS-type NMDAR1 after deglycosylation with endoglycosidase F/peptide-N-glycosidase F. In functional studies, we demonstrated that NMDA receptor activity was necessary for phorbol myristate acetate (PMA)-induced differentiation of megakaryoblastic cells; NMDA receptor blockade by specific antagonists significantly inhibited PMA-mediated increases in cell size, CD41 expression, and adhesion of MEG-01 cells. These results provide evidence for a novel pathway by which megakaryocytopoiesis and platelet production may be regulated.
Collapse
|
5
|
Abstract
Better understanding of hemostasis will be possible by the identification of new lineage-specific stimuli that regulate platelet formation. We describe a novel functional megakaryocyte receptor that belongs to a family of ionotropic glutamate receptors of theN-methyl-d-aspartate (NMDA) subtype responsible for synaptic neurotransmission in the central nervous system (CNS). Northern blotting and reverse-transcriptase polymerase chain reaction (RT-PCR) studies identified expression of NMDAR1 and NMDAR2D type subunit mRNA in rat marrow, human megakaryocytes, and MEG-01 clonal megakaryoblastic cells. Immunohistochemistry and in vivo autoradiographic binding of the NMDA receptor-specific antagonist MK-801 confirmed that megakaryocytes expressed open channel-forming NMDA receptors in vivo. Western blots indicated that megakaryocyte NMDAR1 was either unglycosylated or only glycosylated to low levels, and of identical size to CNS-type NMDAR1 after deglycosylation with endoglycosidase F/peptide-N-glycosidase F. In functional studies, we demonstrated that NMDA receptor activity was necessary for phorbol myristate acetate (PMA)-induced differentiation of megakaryoblastic cells; NMDA receptor blockade by specific antagonists significantly inhibited PMA-mediated increases in cell size, CD41 expression, and adhesion of MEG-01 cells. These results provide evidence for a novel pathway by which megakaryocytopoiesis and platelet production may be regulated.
Collapse
|
6
|
Raulli RE, Jackson B, Tandon N, Mattson M, Rice K, Jamieson GA. Phencyclidine inhibits epinephrine-stimulated platelet aggregation independently of high affinity N-methyl-D-aspartate (NMDA)-type glutamatereceptors. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:175-80. [PMID: 7981230 DOI: 10.1016/0167-4889(94)90188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The psychotomimetic analgesic phencyclidine (PCP), which binds to a high affinity site on the neuronal N-methyl-D-aspartate (NMDA)-sensitive glutamate receptor, has previously been found to bind to platelets with high affinity and to specifically delay the onset of epinephrine-stimulated platelet aggregation (Jamieson et al. (1992) Biochem. J. 285, 35-39). We have now shown that the rank order of binding affinities of 14 synthetic PCP analogs at the high affinity binding site on platelets does not parallel the rank order of their affinities in binding to rat brain membranes, indicating that the high affinity PCP binding sites in platelets is distinct from the neuronal NMDA receptor. The order of potency of six of these analogs in delaying the onset of epinephrine-stimulated platelet aggregation also did not parallel the rank order of their binding affinities for platelet or brain binding sites. These data indicate that the ability of PCP analogs to inhibit epinephrine-stimulated aggregation is not related to their ability to bind to the high affinity platelet PCP binding site. Furthermore, (+)MK-801, which binds to the same high affinity binding site in neurons as does PCP, failed to inhibit epinephrine-stimulated platelet aggregation, further suggesting that the site at which PCP acts in platelets is not related to the NMDA-type glutamate receptor. Further studies showed that 5-HT2 receptors and effects on platelet secretion are not involved in PCP-mediated inhibition of epinephrine-induced platelet aggregation.
Collapse
Affiliation(s)
- R E Raulli
- Cell Biology Department, American Red Cross, Rockville, MD 20855
| | | | | | | | | | | |
Collapse
|