1
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
2
|
Meng D, Shen L, Yang R, Zhang X, Sheng J. Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus. Biochim Biophys Acta Gen Subj 2014; 1840:120-8. [DOI: 10.1016/j.bbagen.2013.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
3
|
Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV. Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:35-50. [PMID: 23353016 DOI: 10.1016/j.dci.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 05/20/2023]
Abstract
The purple sea urchin has a complex immune system that is likely mediated by gene expression in coelomocytes (blood cells). A broad array of potential immune receptors and immune response proteins has been deduced from their gene models. Here we use shotgun mass spectrometry to describe 307 proteins with possible immune function in sea urchins including proteins involved in the complement pathway and numerous SRCRs. The relative abundance of dual oxidase 1, ceruloplasmin, ferritin and transferrin suggests the production of reactive oxygen species in coelomocytes and the sequestration of iron. Proteins such as selectin, cadherin, talin, galectin, amassin and the Von Willebrand factor may be involved in generating a strong clotting reaction. Cell signaling proteins include a guanine nucleotide binding protein, the Rho GDP dissociation factor, calcium storage molecules and a variety of lipoproteins. However, based on this dataset, the expression of TLRs, NLRs and fibrinogen domain containing proteins in coelomic fluid and coelomocytes could not be verified.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
4
|
Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G. Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:765-76. [PMID: 21790816 DOI: 10.1111/j.1365-313x.2011.04727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chitinases are a class of ubiquitous proteins that are widely distributed in plants. Defense is the major natural role for chitinases, primarily against fungal pathogens. Little is known regarding their non-defensive roles in seeds. In this study, a new class III chitinase from pomegranate seeds (pomegranate seed chitinase, PSC) was isolated and purified to homogeneity. The native state of PSC is a monomer with a molecular weight of approximately 30 kDa. This chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a calcium storage protein. Consistent with this idea, its amino acid sequence (inferred from cDNA) is rich in acidic amino acid residues, especially Asp, similar to reported calcium storage proteins. The presence of calcium considerably improves the stability of the protein but has little effect on its enzymatic activity. Transmission electron microscopy analyses indicate that, similar to phytoferritin, this enzyme is widely distributed in the stroma of amyloplasts of the embryonic cells, suggesting that amyloplasts in seeds could serve as an alternative plastid for calcium storage. Indeed, the transmission electron microscopy results showed that, within the embryonic cells, calcium ions are mainly distributed in the stroma of the amyloplasts, consistent with a role for PSC in calcium storage. Thus, the plant appears to have evolved a new plastid for calcium storage in seeds. During seed germination, the content of this enzyme decreases with time, suggesting that it is involved in the germination process.
Collapse
Affiliation(s)
- Haixia Yang
- CAU & ACC Joint Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Novák P, Soukup T. Calsequestrin distribution, structure and function, its role in normal and pathological situations and the effect of thyroid hormones. Physiol Res 2011; 60:439-52. [PMID: 21401301 DOI: 10.33549/physiolres.931989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calsequestrin is the main calcium binding protein of the sarcoplasmic reticulum, serving as an important regulator of Ca(2+). In mammalian muscles, it exists as a skeletal isoform found in fast- and slow-twitch skeletal muscles and a cardiac isoform expressed in the heart and slow-twitch muscles. Recently, many excellent reviews that summarised in great detail various aspects of the calsequestrin structure, localisation or function both in skeletal and cardiac muscle have appeared. The present review focuses on skeletal muscle: information on cardiac tissue is given, where differences between both tissues are functionally important. The article reviews the known multiple roles of calsequestrin including pathology in order to introduce this topic to the broader scientific community and to stimulate an interest in this protein. Newly we describe our results on the effect of thyroid hormones on skeletal and cardiac calsequestrin expression and discuss them in the context of available literary data on this topic.
Collapse
Affiliation(s)
- P Novák
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
6
|
Jayantha Gunaratne H, Vacquier VD. Sequence, annotation and developmental expression of the sea urchin Ca2+-ATPase family. Gene 2007; 397:67-75. [PMID: 17482382 DOI: 10.1016/j.gene.2007.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 04/07/2007] [Accepted: 04/07/2007] [Indexed: 11/30/2022]
Abstract
Whole genome sequence data permit the study of protein families regulating cellular homeostasis during development. Here we present a study of the sea urchin Ca(2+)-ATPases made possible by the Sea Urchin Genome Sequencing Project. This is of potential interest because adult sea urchins, their gametes and embryos live in the relatively high Ca(2+) concentration of 10 mM. Three Ca(2+)-ATPases regulate Ca(2+) levels in animal cells: plasma membrane Ca(2+)-ATPase (PMCA), sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and secretory pathway Ca(2+)-ATPase (SPCA). The primary structures of Sp-PMCA and Sp-SERCA in the sea urchin, Strongylocentrotus purpuratus (Sp), have been published. Here, we present the primary structure of Sp-SPCA, which is 912 amino acids and has 66% identity and 80% similarity to human SPCA1. Southern blots and genome analysis show that Sp-SPCA is a single copy gene. Each Sp Ca(2+)-ATPase is highly conserved when compared to its human ortholog, indicating that human and sea urchin share structurally similar energy driven Ca(2+) homeostasis mechanisms that have been maintained throughout the course of deuterostome evolution. Annotation using the assembled sea urchin genome reveals that Sp-SPCA, Sp-PMCA and Sp-SERCA have 23, 17 and 24 exons. RT-Q-PCR shows that transcripts of Sp-SPCA are at low levels compared to Sp-PMCA and Sp-SERCA. Gradual increases in Sp-PMCA and Sp-SERCA mRNA begin at the 18 hour hatched blastula stage and peak 4-5-fold higher by 25 h at the mid to late blastulae stage.
Collapse
Affiliation(s)
- H Jayantha Gunaratne
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
7
|
Shanklin DR. Cellular magnesium acquisition: an anomaly in embryonic cation homeostasis. Exp Mol Pathol 2007; 83:224-40. [PMID: 17532318 DOI: 10.1016/j.yexmp.2007.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 12/22/2022]
Abstract
The intracellular dominance of magnesium ion makes clinical assessment difficult despite the critical role of Mg(++) in many key functions of cells and enzymes. There is general consensus that serum Mg(++) levels are not representative of the growing number of conditions for which magnesium is known to be important. There is no consensus method or sample source for testing for clinical purposes. High intracellular Mg(++) in vertebrate embryos results in part from interactions of cations which influence cell membrane transport systems. These are functionally competent from the earliest stages, at least transiently held over from the unfertilized ovum. Kinetic studies with radiotracer cations, osmolar variations, media lacking one or more of the four biological cations, Na(+), Mg(++), K(+), and Ca(++), and metabolic poison 0.05 mEq/L NaF, demonstrated that: (1) all four cations influence the behavior of the others, and (2) energy is required for uptake and efflux on different time scales, some against gradient. Na(+) uptake is energy dependent against an efflux gradient. The rate of K(+) loss is equal with or without fluoride, suggesting a lack of an energy requirement at these stages. Ca(++) efflux took twice as long in the presence of fluoride, likely due in part to intracellular binding. Mg(++) is anomalous in that early teleost vertebrate embryos have an intracellular content exceeding the surrounding sea water, an isolated unaffected yolk compartment, and a clear requirement for energy for both uptake and efflux. The physiological, pathological, and therapeutic roles of magnesium are poorly understood. This will change: (1) when (28)Mg is once again generally available at a reasonable cost for both basic research and clinical assessment, and (2) when serum or plasma levels are determined simultaneously with intracellular values, preferably as part of complete four cation profiles. Atomic absorption spectrophotometry, energy-dispersive x-ray analysis, and inductively coupled plasma emission spectroscopy on sublingual mucosal and peripheral blood samples are potential methods of value for coordinated assessments.
Collapse
Affiliation(s)
- D Radford Shanklin
- Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, 930 Madison Avenue, Suite 599, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC. Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 2005; 22:33-47. [PMID: 15827237 DOI: 10.1152/physiolgenomics.00052.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, is a member of the phylum Echinodermata, which is basal to the phylum Chordata within the deuterostome lineage of the animal kingdom. This relationship makes the analysis of the sea urchin immune system relevant to understanding the evolution of the deuterostome immune system leading to the Vertebrata. Subtractive suppression hybridization was employed to generate cDNA probes for screening high-density arrayed, conventional cDNA libraries to identify genes that were upregulated in coelomocytes responding to lipopolysaccharide. Results from 1,247 expressed sequence tags (ESTs) were used to infer that coelomocytes upregulated genes involved in RNA splicing, protein processing and targeting, secretion, endosomal activities, cell signaling, and alterations to the cytoskeletal architecture including interactions with the extracellular matrix. Of particular note was a set of transcripts represented by 60% of the ESTs analyzed, which encoded a previously uncharacterized family of closely related proteins, provisionally designated as 185/333. These transcripts exhibited a significant level of variation in their nucleotide sequence and evidence of putative alternative splicing that could yield up to 15 translatable elements. On the basis of the striking increase in gene expression in response to lipopolysaccharide and the unexpected level of diversity of the 185/333 messages, we propose that this set of transcripts encodes a family of putative immune response proteins that may represent a major component of an immunological response to bacterial challenge.
Collapse
Affiliation(s)
- Sham V Nair
- Department of Biological Sciences, George Washington University, Washington, District of Columbia 20052, USA
| | | | | | | | | |
Collapse
|
9
|
Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, Zaydfudim V, Conner S. The biology of cortical granules. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:117-206. [PMID: 11580200 DOI: 10.1016/s0074-7696(01)09012-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An egg-that took weeks to months to make in the adult-can be extraordinarily transformed within minutes during its fertilization. This review will focus on the molecular biology of the specialized secretory vesicles of fertilization, the cortical granules. We will discuss their role in the fertilization process, their contents, how they are made, and the molecular mechanisms that regulate their secretion at fertilization. This population of secretory vesicles has inherent interest for our understanding of the fertilization process. In addition, they have import because they enhance our understanding of the basic processes of secretory vesicle construction and regulation, since oocytes across species utilize this vesicle type. Here, we examine diverse animals in a comparative approach to help us understand how these vesicles function throughout phylogeny and to establish conserved themes of function.
Collapse
Affiliation(s)
- G M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912 , USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Stephens RE. Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics. ACTA ACUST UNITED AC 2001; 289:335-49. [PMID: 11351321 DOI: 10.1002/jez.1015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The intimate association of the Golgi apparatus with cilia suggests a functional alliance. To explore the relationship between the synthesis and processing of membrane constituents and the turnover or regeneration of cilia, parallel cultures of gastrula-stage sea urchin embryos were pulse-chase labeled with (3)H-leucine in the presence of monensin, brefeldin A, or colchicine. Steady-state labeled cilia were isolated, and the embryos were allowed to regenerate cilia, which were then isolated after the equivalent of two normal regeneration times. Regeneration was absent in colchicine, minimal in monensin, and inhibited about 40% by brefeldin A. Both monensin and brefeldin A effectively inhibited the post-translational processing of prominent phosphatidylinositoylated and palmitoylated membrane proteins and the axoneme-associated transmembrane Spec3 protein, yet most other membrane plus matrix and 9+2 axonemal proteins were labeled to levels indistinguishable from untreated controls. However, total protein analysis of the membrane plus matrix fractions showed a substantial increase in glycoproteins and the calsequestrin-like protein ECaSt/PDI after treatment at steady-state with all three inhibitors and after regeneration in brefeldin A. Other constituents of this compartment, such as membrane-associated tubulin, calmodulin, and a 53-kDa calcium-binding protein, were unchanged. Therefore, inhibition of Golgi function via three different mechanisms left 9+2 protein turnover undiminished but resulted in an accumulation, in the cilium, of already-processed membrane pool constituents and a normally ER-resident protein. A disproportionate elevation of HSP70 suggests that a novel stress response may be involved in inhibiting ciliary regeneration or promoting glycoprotein augmentation.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
11
|
Lucero HA, Kaminer B. The role of calcium on the activity of ERcalcistorin/protein-disulfide isomerase and the significance of the C-terminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J Biol Chem 1999; 274:3243-51. [PMID: 9915866 DOI: 10.1074/jbc.274.5.3243] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERcalcistorin/protein-disulfide isomerase (ECaSt/PDI) shows a 55% identity with mammalian protein-disulfide isomerase (PDI) (Lucero, H. A., Lebeche, D., and Kaminer, B. (1994) J. Biol. Chem. 269, 23112-23119) is a high capacity low affinity Ca2+-binding protein and behaves as a Ca2+ storage protein in the ER of a living cell (Lucero, H. A., Lebeche, D., and Kaminer, B. (1998) J. Biol. Chem. 273, 9857-9863). Here we show that recombinant ECaSt/PDI bound 26 mol of Ca2+/mol and a C-terminal truncated mutant bound 14 mol of Ca2+/mol, both with a Kd of 2.8 mM in 50 mM KCl and 5.2 mM in 150 mM KCl. The percentage reduction in Ca2+ binding in the mutant corresponded with the percentage reduction of deleted pairs of acidic residues, postulated low affinity Ca2+-binding sites. 5 mM Ca2+ moderately increased the PDI activity of both ECaSt/PDI and the C-terminal truncated mutant on reduced RNase and insulin. Surprisingly, ECaSt/PDI in the absence of Ca2+ prevented the spontaneous reactivation of reduced bovine pancreatic trypsin inhibitor. In the presence of 1-5 mM Ca2+ (or 10 microM polylysine) ECaSt/PDI augmented the bovine pancreatic trypsin inhibitor reactivation rate. In contrast, the C-terminal truncated ECaSt/PDI augmented rBPTI reactivation in the absence of Ca2+ and 1-5 mM Ca2+ further accelerated the reactivation rate, responses similar to those obtained with mammalian PDI.
Collapse
Affiliation(s)
- H A Lucero
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
12
|
Lucero HA, Lebeche D, Kaminer B. ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. Comparison with calreticulin and calsequestrin. J Biol Chem 1998; 273:9857-63. [PMID: 9545326 DOI: 10.1074/jbc.273.16.9857] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERcalcistorin/protein-disulfide isomerase (ECaSt/PDI), a high capacity low affinity Ca2+-binding protein in the endoplasmic reticulum of sea urchin eggs (Lebeche, D., and Kaminer, B. (1992) Biochem. J. 287, 741-747), shares 55% sequence identity with mammalian PDI and has PDI activity (Lucero, H., Lebeche, D., and Kaminer, B. (1994) J. Biol. Chem. 269, 23112-23119). We report on ECaSt/PDI functioning as a Ca2+ storage protein in the endoplasmic reticulum (ER) of a living cell and compare it with calsequestrin and calreticulin, high capacity low affinity Ca2+-binding proteins in the sarcoplasmic reticulum and ER, respectively. Stably transfected Chinese hamster ovary cell clones expressed these proteins, which were localized in the ER of the cell. Microsomes from cells expressing ECaSt/PDI, calreticulin, and calsequestrin accumulated 17.2 +/- 0.27, 20.0 +/- 0.82, and 38.0 +/- 0.28 nmol of Ca2+/mg of protein, respectively; control microsomes accumulated from 2.6 +/- 0.17 to 2.9 +/- 0.14 nmol of Ca2+/mg of protein. The initial rate of Ca2+ uptake was similar in microsomes from transfected and control cells. Microsomes containing an ECaSt/PDI mutant in which 45% of the acidic residue pairs in the C terminus were truncated had a reduced Ca2+ storage capacity. This supports our previous hypothesis that the degree of low affinity Ca2+ binding is dependent on the number of pairs of carboxyl groups in the molecule. The maximal Ca2+ accumulation by microsomes containing the expressed ECaSt/PDI, C-terminally truncated ECaSt/PDI, calreticulin, or calsequestrin correlates approximately with the Ca2+ binding capacity of the respective proteins.
Collapse
Affiliation(s)
- H A Lucero
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
13
|
Darby NJ, Kemmink J, Creighton TE. Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry 1996; 35:10517-28. [PMID: 8756708 DOI: 10.1021/bi960763s] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein disulfide isomerase (PDI) appears on the basis of its primary structure to be a multidomain protein, but the number and nature of the domains has been uncertain. Two of the domains, a and a', which are homologous to thioredoxin and active in catalysis of disulfide bond formation, have been identified and characterized previously. Sections of the N-terminal half of the PDI sequence have been expressed and the limits of their folded structures delineated by limited proteolysis. In addition to the a-domain, the boundaries of a domain with no activity on thiol/disulfide groups, designated b, have been identified. This domain has been produced independently; its cooperative unfolding transition and its CD and NMR spectra confirm that it is an autonomously folded structure in isolation and when part of PDI. Fusion of the b-domain to the a-domain, as occurs naturally in the first half of PDI, did not alter substantially the catalytic activity of the a-domain. It still catalyzes only a subset of the thiol/disulfide exchange reactions of intact PDI and has a reduced ability to catalyze protein disulfide rearrangements. The a- and b-domains account structurally for virtually all of the first half of the PDI polypeptide chain, and it is very unlikely that there exists a proposed third domain homologous to the estrogen receptor. The b-domain exhibits some sequence homology to calsequestrin, a calcium binding protein from the sarcoplasmic reticulum of muscle.
Collapse
Affiliation(s)
- N J Darby
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
ERcalcistorin/protein disulfide isomerase (PDI). Sequence determination and expression of a cDNA clone encoding a calcium storage protein with PDI activity from endoplasmic reticulum of the sea urchin egg. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31627-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|