1
|
Fröhlich C, Bunzel HA, Buda K, Mulholland AJ, van der Kamp MW, Johnsen PJ, Leiros HKS, Tokuriki N. Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase. Nat Catal 2024; 7:499-509. [PMID: 38828429 PMCID: PMC11136654 DOI: 10.1038/s41929-024-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/25/2024] [Indexed: 06/05/2024]
Abstract
Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
Collapse
Affiliation(s)
| | - H. Adrian Bunzel
- Department of Biosystem Science and Engineering, ETH Zurich, Basel, Switzerland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Pål J. Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
2
|
Sun J, Chikunova A, Boyle AL, Voskamp P, Timmer M, Ubbink M. Enhanced activity against a third-generation cephalosporin by destabilization of the active site of a class A beta-lactamase. Int J Biol Macromol 2023; 250:126160. [PMID: 37549761 DOI: 10.1016/j.ijbiomac.2023.126160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The β-lactamase BlaC conveys resistance to a broad spectrum of β-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other β-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aleksandra Chikunova
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Monika Timmer
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
3
|
Adediran SA, Morrison MJ, Pratt RF. Detection of an enzyme isomechanism by means of the kinetics of covalent inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140681. [PMID: 34087495 DOI: 10.1016/j.bbapap.2021.140681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Turnover of substrates by many enzymes involves free enzyme forms that differ from the stable form of the enzyme in the absence of substrate. These enzyme species, known as isoforms, have, in general, different physical and chemical properties than the native enzymes. They usually occur only in small concentrations under steady state turnover conditions and thus are difficult to detect. We show in this paper that in one particular case of an enzyme (a class C β-lactamase) with specific substrates (cephalosporins) the presence of an enzyme isoform (E') can be detected by means of its different reactivity than the native enzyme (E) with a class of covalent inhibitors (phosphonate monoesters). Generation of E' from E arises either directly from substrate turnover or by way of a branched path from an acyl-enzyme intermediate. The relatively slow spontaneous restoration of E from E' is accelerated by certain small molecules in solution, for example cyclic amines such as imidazole and salts such as sodium chloride. Solvent deuterium kinetic isotope effects and the effect of methanol on cephalosporin turnover showed that for both E and E', kcat is limited by deacylation of an acyl-enzyme intermediate rather than by enzyme isomerization.
Collapse
Affiliation(s)
- S A Adediran
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | - R F Pratt
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
4
|
Lang PA, Parkova A, Leissing TM, Calvopiña K, Cain R, Krajnc A, Panduwawala TD, Philippe J, Fishwick CWG, Trapencieris P, Page MGP, Schofield CJ, Brem J. Bicyclic Boronates as Potent Inhibitors of AmpC, the Class C β-Lactamase from Escherichia coli. Biomolecules 2020; 10:E899. [PMID: 32545682 PMCID: PMC7356297 DOI: 10.3390/biom10060899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C β‑lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied β-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D β‑lactamases, our data support the proposal that bicyclic boronates are broad-spectrum β‑lactamase inhibitors that work by mimicking a high energy 'tetrahedral' intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful β-lactamase inhibition.
Collapse
Affiliation(s)
- Pauline A. Lang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Anete Parkova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.P.); (P.T.)
| | - Thomas M. Leissing
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Karina Calvopiña
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Ricky Cain
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; (R.C.); (C.W.G.F.)
| | - Alen Krajnc
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Tharindi D. Panduwawala
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jules Philippe
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | | | | | - Malcolm G. P. Page
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | - Christopher J. Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| |
Collapse
|
5
|
Abstract
A standard numbering scheme has been proposed for class C β-lactamases. This will significantly enhance comparison of biochemical and biophysical studies performed on different members of this class of enzymes and facilitate communication in the field.
Collapse
|
6
|
Cortina GA, Hays JM, Kasson PM. Conformational Intermediate That Controls KPC-2 Catalysis and Beta-Lactam Drug Resistance. ACS Catal 2018; 8:2741-2747. [PMID: 30637173 DOI: 10.1021/acscatal.7b03832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The KPC-2 carbapenemase enzyme is responsible for drug resistance in the majority of carbapenem-resistant gram-negative bacterial infections in the United States. A better understanding of what permits KPC-2 to hydrolyze carbapenem antibiotics and how this might be inhibited is thus of fundamental interest and great practical importance to development of better anti-infectives. By correlating molecular dynamics simulations with experimental enzyme kinetics, we have identified conformational changes that control KPC-2's ability to hydrolyze carbapenem antibiotics. Related beta-lactamase enzymes can interconvert between catalytically permissive and catalytically nonpermissive forms of an acylenzyme intermediate critical to drug hydrolysis. Using molecular dynamics simulations, we identify a similar equilibrium in KPC-2 and analyze the determinants of this conformational change. Because the conformational dynamics of KPC-2 are complex and sensitive to allosteric changes, we develop an information-theoretic approach to identify key determinants of this change. We measure unbiased estimators of the reaction coordinate between catalytically permissive and nonpermissive states, perform information-theoretic feature selection and, using restrained molecular dynamics simulations, validate the protein conformational changes predicted to control catalytically permissive geometry. We identify two binding-pocket residues that control the conformational transitions between catalytically active and inactive forms of KPC-2. Mutations to one of these residues, Trp105, lower the stability of the catalytically permissive state in simulations and have reduced experimental k cat values that show a strong linear correlation with the simulated catalytically permissive state lifetimes. This understanding can be leveraged to predict the drug resistance of further KPC-2 mutants and help design inhibitors to combat extreme drug resistance.
Collapse
Affiliation(s)
| | | | - Peter M. Kasson
- Laboratory of Molecular Biophysics, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala 75124, Sweden
| |
Collapse
|
7
|
Exposing a β-Lactamase "Twist": the Mechanistic Basis for the High Level of Ceftazidime Resistance in the C69F Variant of the Burkholderia pseudomallei PenI β-Lactamase. Antimicrob Agents Chemother 2015; 60:777-88. [PMID: 26596949 DOI: 10.1128/aac.02073-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022] Open
Abstract
Around the world, Burkholderia spp. are emerging as pathogens highly resistant to β-lactam antibiotics, especially ceftazidime. Clinical variants of Burkholderia pseudomallei possessing the class A β-lactamase PenI with substitutions at positions C69 and P167 are known to demonstrate ceftazidime resistance. However, the biochemical basis for ceftazidime resistance in class A β-lactamases in B. pseudomallei is largely undefined. Here, we performed site saturation mutagenesis of the C69 position and investigated the kinetic properties of the C69F variant of PenI from B. pseudomallei that results in a high level of ceftazidime resistance (2 to 64 mg/liter) when expressed in Escherichia coli. Surprisingly, quantitative immunoblotting showed that the steady-state protein levels of the C69F variant β-lactamase were ∼4-fold lower than those of wild-type PenI (0.76 fg of protein/cell versus 4.1 fg of protein/cell, respectively). However, growth in the presence of ceftazidime increases the relative amount of the C69F variant to greater than wild-type PenI levels. The C69F variant exhibits a branched kinetic mechanism for ceftazidime hydrolysis, suggesting there are two different conformations of the enzyme. When incubated with an anti-PenI antibody, one conformation of the C69F variant rapidly hydrolyzes ceftazidime and most likely contributes to the higher levels of ceftazidime resistance observed in cell-based assays. Molecular dynamics simulations suggest that the electrostatic characteristics of the oxyanion hole are altered in the C69F variant. When ceftazidime was positioned in the active site, the C69F variant is predicted to form a greater number of hydrogen-bonding interactions than PenI with ceftazidime. In conclusion, we propose "a new twist" for enhanced ceftazidime resistance mediated by the C69F variant of the PenI β-lactamase based on conformational changes in the C69F variant. Our findings explain the biochemical basis of ceftazidime resistance in B. pseudomallei, a pathogen of considerable importance, and suggest that the full repertoire of conformational states of a β-lactamase profoundly affects β-lactam resistance.
Collapse
|
8
|
Tilvawala R, Pratt RF. Kinetics of Action of a Two-Stage Pro-Inhibitor of Serine β-Lactamases. Biochemistry 2013; 52:7060-70. [DOI: 10.1021/bi400873r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ronak Tilvawala
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
9
|
Thierbach S, Büldt-Karentzopoulos K, Dreiling A, Hennecke U, König S, Fetzner S. Hydrolase-like properties of a cofactor-independent dioxygenase. Chembiochem 2012; 13:1125-7. [PMID: 22549932 DOI: 10.1002/cbic.201200152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 11/09/2022]
Abstract
Mechanistic promiscuity: The (2-alkyl)-3-hydroxy-4(1H)-quinolone-cleaving dioxygenase Hod has an α/β-hydrolase fold and a Ser/His/Asp triad in its active site. Isatoic anhydride, a suicide substrate of serine hydrolases, inactivates Hod by covalent modification of the active-site serine, thus indicating that the α/β-hydrolase fold can accommodate dioxygenase chemistry without completely abandoning hydrolase-like properties.
Collapse
Affiliation(s)
- Sven Thierbach
- Institute of Molecular Microbiology and Biotechnology, University of Muenster, Corrensstrasse 3, 48149 Muenster, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A. In vitro and in vivo properties of BAL30376, a β-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 2011; 55:1510-9. [PMID: 21245441 PMCID: PMC3067176 DOI: 10.1128/aac.01370-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/03/2010] [Accepted: 01/07/2011] [Indexed: 11/20/2022] Open
Abstract
BAL30376 is a triple combination comprising a siderophore monobactam, BAL19764; a novel bridged monobactam, BAL29880, which specifically inhibits class C β-lactamases; and clavulanic acid, which inhibits many class A and some class D β-lactamases. The MIC(90) was ≤ 4 μg/ml (expressed as the concentration of BAL19764) for most species of the Enterobacteriaceae family, including strains that produced metallo-β-lactamases and were resistant to all of the other β-lactams tested. The MIC(90) for Stenotrophomonas maltophilia was 2 μg/ml, for multidrug-resistant (MDR) Pseudomonas aeruginosa it was 8 μg/ml, and for MDR Acinetobacter and Burkholderia spp. it was 16 μg/ml. The presence of the class C β-lactamase inhibitor BAL29880 contributed significantly to the activity of BAL30376 against strains of Citrobacter freundii, Enterobacter species, Serratia marcescens, and P. aeruginosa. The presence of clavulanic acid contributed significantly to the activity against many strains of Escherichia coli and Klebsiella pneumoniae that produced class A extended-spectrum β-lactamases. The activity of BAL30376 against strains with metallo-β-lactamases was largely attributable to the intrinsic stability of the monobactam BAL19764 toward these enzymes. Considering its three components, BAL30376 was unexpectedly refractory toward the development of stable resistance.
Collapse
Affiliation(s)
- Malcolm G P Page
- Basilea Pharmaceutica International Ltd., PO Box 3255, CH-4005 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
11
|
In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother 2010; 54:2291-302. [PMID: 20308379 DOI: 10.1128/aac.01525-09] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL30072 is a new monocyclic beta-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with beta-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC(90)s were 4 microg/ml for MDR Acinetobacter spp. and 8 microg/ml for MDR P. aeruginosa, whereas the MIC(90) of meropenem for the same sets of isolates was >32 microg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-beta-lactamases that conferred resistance to all other beta-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-beta-lactamase. Unlike other monocyclic beta-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam.
Collapse
|
12
|
Drawz SM, Babic M, Bethel CR, Taracila M, Distler AM, Ori C, Caselli E, Prati F, Bonomo RA. Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design. Biochemistry 2010; 49:329-40. [PMID: 19925018 DOI: 10.1021/bi9015988] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need to develop beta-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed. In the boronic acid series, a chiral cephalothin analogue with a meta-carboxyphenyl moiety corresponding to the C(3)/C(4) carboxylate of beta-lactams showed the lowest K(i) (11 +/- 1 nM). In antimicrobial susceptibility tests, this cephalothin analogue lowered the ceftazidime and cefotaxime minimum inhibitory concentrations (MICs) of Escherichia coli DH10B cells carrying bla(ADC) from 16 to 4 microg/mL and from 8 to 1 microg/mL, respectively. On the other hand, each carbapenem exhibited a K(i) of <20 microM, and timed electrospray ionization mass spectrometry (ESI-MS) demonstrated the formation of adducts corresponding to acyl-enzyme intermediates with both intact carbapenem and carbapenem lacking the C(6) hydroxyethyl group. To improve our understanding of the interactions between the beta-lactamase and the inhibitors, we constructed models of ADC as an acyl-enzyme intermediate with (i) the meta-carboxyphenyl cephalothin analogue and (ii) the carbapenems, imipenem and meropenem. Our first model suggests that this chiral cephalothin analogue adopts a novel conformation in the beta-lactamase active site. Further, the addition of the substituent mimicking the cephalosporin dihydrothiazine ring may significantly improve affinity for the ADC beta-lactamase. In contrast, the ADC-carbapenem models offer a novel role for the R(2) side group and also suggest that elimination of the C(6) hydroxyethyl group by retroaldolic reaction leads to a significant conformational change in the acyl-enzyme intermediate. Lessons from the diverse mechanisms and structures of the boronic acid derivatives and carbapenems provide insights for the development of new beta-lactamase inhibitors against these critical drug resistance targets.
Collapse
Affiliation(s)
- Sarah M Drawz
- Department of Pathology, Case Western Reserve UniversitySchool of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
|
16
|
Queenan AM, Shang W, Kania M, Page MGP, Bush K. Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 2007; 51:3089-95. [PMID: 17591851 PMCID: PMC2043179 DOI: 10.1128/aac.00218-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The interactions of ceftobiprole with purified beta-lactamases from molecular classes A, B, C, and D were determined and compared with those of benzylpenicillin, cephaloridine, cefepime, and ceftazidime. Enzymes were selected from functional groups 1, 2a, 2b, 2be, 2d, 2e, and 3 to represent beta-lactamases from organisms within the antibacterial spectrum of ceftobiprole. Ceftobiprole was refractory to hydrolysis by the common staphylococcal PC1 beta-lactamase, the class A TEM-1 beta-lactamase, and the class C AmpC beta-lactamase but was labile to hydrolysis by class B, class D, and class A extended-spectrum beta-lactamases. Cefepime and ceftazidime followed similar patterns. In most cases, the hydrolytic stability of a substrate correlated with the MIC for the producing organism. Ceftobiprole and cefepime generally had lower MICs than ceftazidime for AmpC-producing organisms, particularly AmpC-overexpressing Enterobacter cloacae organisms. However, all three cephalosporins were hydrolyzed very slowly by AmpC cephalosporinases, suggesting that factors other than beta-lactamase stability contribute to lower ceftobiprole and cefepime MICs against many members of the family Enterobacteriaceae.
Collapse
Affiliation(s)
- Anne Marie Queenan
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 1000 Route 202 South, Raritan, NJ 08869, USA.
| | | | | | | | | |
Collapse
|
17
|
Whittaker MM, Pan HY, Yukl ET, Whittaker JW. Burst Kinetics and Redox Transformations of the Active Site Manganese Ion in Oxalate Oxidase. J Biol Chem 2007; 282:7011-23. [PMID: 17210574 DOI: 10.1074/jbc.m609374200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide and hydrogen peroxide. In this study, unusual nonstoichiometric burst kinetics of the steady state reaction were observed and analyzed in detail, revealing that a reversible inactivation process occurs during turnover, associated with a slow isomerization of the substrate complex. We have investigated the underlying molecular mechanism of this kinetic behavior by preparing recombinant barley oxalate oxidase in three distinct oxidation states (Mn(II), Mn(III), and Mn(IV)) and producing a nonglycosylated variant for detailed biochemical and spectroscopic characterization. Surprisingly, the fully reduced Mn(II) form, which represents the majority of the as-isolated native enzyme, lacks oxalate oxidase activity, but the activity is restored by oxidation of the metal center to either Mn(III) or Mn(IV) forms. All three oxidation states appear to interconvert under turnover conditions, and the steady state activity of the enzyme is determined by a balance between activation and inactivation processes. In O(2)-saturated buffer, a turnover-based redox modification of the enzyme forms a novel superoxidized mononuclear Mn(IV) biological complex. An oxalate activation role for the catalytic metal ion is proposed based on these results.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Environmental and Biomolecular Systems, Oregon Health and Sciences University, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
18
|
Goldberg SD, Iannuccilli W, Nguyen T, Ju J, Cornish VW. Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis. Protein Sci 2003; 12:1633-45. [PMID: 12876313 PMCID: PMC2323950 DOI: 10.1110/ps.0302903] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite their clinical importance, the mechanism of action of the class C beta-lactamases is poorly understood. In contrast to the class A and class D beta-lactamases, which contain a glutamate residue and a carbamylated lysine in their respective active sites that are thought to serve as general base catalysts for beta-lactam hydrolysis, the mechanism of activation of the serine and water nucleophiles in the class C enzymes is unclear. To probe for residues involved in catalysis, the class C beta-lactamase from Enterobacter cloacae P99 was studied by combinatorial scanning mutagenesis at 122 positions in and around the active site. Over 1000 P99 variants were screened for activity in a high-throughput in vivo antibiotic resistance assay and sequenced by 96-capillary electrophoresis to identify residues that are important for catalysis. P99 mutants showing reduced capability to convey antibiotic resistance were purified and characterized in vitro. The screen identified an active-site hydrogen-bonding network that is key to catalysis. A second cluster of residues was identified that likely plays a structural role in the enzyme. Otherwise, residues not directly contacting the substrate showed tolerance to substitution. The study lends support to the notion that the class C beta-lactamases do not have a single residue that acts as the catalytic general base. Rather, catalysis is affected by a hydrogen-bonding network in the active site, suggesting a possible charge relay system.
Collapse
Affiliation(s)
- Shalom D Goldberg
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
19
|
Goodall JJ, Booth VK, Ashcroft AE, Wharton CW. Hydrogen-Bonding in 2-Aminobenzoyl-α-chymotrypsin Formed by Acylation of the Enzyme with Isatoic Anhydride: IR and Mass Spectroscopic Studies. Chembiochem 2002; 3:68-75. [PMID: 17590956 DOI: 10.1002/1439-7633(20020104)3:1<68::aid-cbic68>3.0.co;2-d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acyl-enzyme formed upon acylation of alpha-chymotrypsin with isatoic anhydride has been characterised by infrared spectroscopy. Acylation at pH 7 to yield the 2-aminobenzoyl-enzyme is rapid (k = 5.57x 10(-2)s(-1)), while deacylation is much slower (k =3.7 x 10(-5)10(-2) (s-). The [1C=O]-labelled form of isatoic anhydride has been synthesised, to allow construction of [72C=O]- minus [13C=O]difference spectra; these highlight the carbonyl absorbance of the ligand and eliminate spectral effects that arise from protein perturbation. The ester carbonyl band of the acyl-enzyme absorbs at a wavenumber of 1695cm(-1) and has been shown by deconvolution analysis to represent a single, well-defined conformation. Model studies of ethyl 2-aminobenzoate in a range of solvents show that its carbonyl group is in a hexane-like environment (that is, very nonpolar). It is proposed that the low wavenumber of the carbonyl absorbance arises from the presence of an internal hydrogen bond between the 2-amino group and the ester carbonyl oxygen; this leads to polarisation of the carbonyl group both in the enzyme and in nonpolar solvents. However, in view of the slow deacylation, it is clear that the acyl group is in a nonproductive conformation, with no interaction with the oxyanion hole, and that deacylation occurs from this form or from a minor, invisible form. The infrared data have been supported by kinetic electrospray mass spectroscopic measurements, which demonstrate that the acyl-enzyme is that previously anticipated, and by molecular modelling of 2-aminobenzoyl-alpha-chymotrypsin. It is concluded from pH-dependence measurements that general base catalysis by the 2-amino group is not involved in deacylation.
Collapse
Affiliation(s)
- Jonathan J Goodall
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
20
|
Pernot L, Frénois F, Rybkine T, L'Hermite G, Petrella S, Delettré J, Jarlier V, Collatz E, Sougakoff W. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. J Mol Biol 2001; 310:859-74. [PMID: 11453693 DOI: 10.1006/jmbi.2001.4805] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The therapeutic problems posed by class D beta-lactamases, a family of serine enzymes that hydrolyse beta-lactam antibiotics following an acylation-deacylation mechanism, are increased by the very low level of sensitivity of these enzymes to beta-lactamase inhibitors. To gain structural and mechanistic insights to aid the design of new inhibitors, we have determined the crystal structure of OXA-13 from Pseudomonas aeruginosa in the apo form and in complex with the carbapenem meropenem. The native form consisted of a dimer displaying an overall organisation similar to that found in the closely related enzyme OXA-10. In the acyl-enzyme complex, the positioning of the antibiotic appeared to be ensured mainly by (i) the covalent acyl bond and (ii) a strong salt-bridge involving the carboxylate moiety of the drug. Comparison of the structures of OXA-13 in the apo form and in complex with meropenem revealed an unsuspected flexibility in the region of the essential serine 115 residue, with possible consequences for the catalytic properties of the enzyme. In the apo form, the Ser115 side-chain is oriented outside the active site, whereas the general base Lys70 adopts a conformation that seems to be incompatible with the activation of the catalytic water molecule required for the deacylation step. In the OXA-13:meropenem complex, a 3.5 A movement of the backbone of the 114-116 loop towards the side-chain of Lys70 was observed, which seems to be driven by a displacement of the neighbouring 91-104 loop and which results in the repositioning of the side-chain hydroxyl group of Ser115 toward the catalytic centre. Concomitantly, the side-chain of Lys70 is forced to curve in the direction of the deacylating water molecule, which is then strongly bound and activated by this residue. However, a distance of ca 5 A separates the catalytic water molecule from the acyl carbonyl group of meropenem, a structural feature that accounts for the inhibition of OXA-13 by this drug. Finally, the low level of penicillinase activity revealed by the kinetic analysis of OXA-13 could be related to the specific presence in position 73 of a serine residue located close to the general base Lys70, which results in a decrease of the number of hydrogen-bonding interactions stabilising the catalytic water molecule.
Collapse
Affiliation(s)
- L Pernot
- Laboratoire de Recherche Moléculaire sur les Antibiotiques (LRMA), Facultés de Médecine Pitié-Salpêtrière and Broussais-Hôtel Dieu, Université Pierre et Marie Curie, 91 bd de l'Hôpital, Paris cedex 13, 75634, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Danel F, Frère JM, Livermore DM. Evidence of dimerisation among class D beta-lactamases: kinetics of OXA-14 beta-lactamase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:132-42. [PMID: 11257516 DOI: 10.1016/s0167-4838(01)00133-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OXA-14 enzyme, a class D beta-lactamase, gave biphasic kinetics with all penicillin and cephalosporin substrates tested, such that the catalytic rate declined more swiftly than was explicable by substrate depletion. This biphasic behaviour was independent of temperature or extraneous protein but was lost if the enzyme was diluted to occupy almost the total assay volume before addition of a small amount of concentrated substrate. The presence of substrate could partially protect the enzyme against conversion to the less active form, with protection greatest at substrate concentration above the K(m). These observations are compatible with the hypothesis that the biphasic kinetics depended on the enzyme existing as a highly active dimer at high concentration and as a less active monomer at low concentration. Direct evidence supporting this hypothesis came from the observation that gel exclusion chromatography indicated a higher molecular weight for concentrated enzyme than for dilute. Biphasic kinetics are not so universal for different substrates amongst beta-lactamases (OXA-10, -11, -13, -16 and -17) that differ from OXA-14 by only one to two amino acid substitutions. It may be that the monomer:dimer equilibrium is more rapidly achieved with these enzymes than with OXA-14, or that the kinetic properties of the dimers and monomers of these enzymes are similar, masking any biphasic trait.
Collapse
Affiliation(s)
- F Danel
- Department of Medical Microbiology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Turner Street, London E1 2AD, UK.
| | | | | |
Collapse
|
22
|
Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MG, Then RL. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2001; 45:825-36. [PMID: 11181368 PMCID: PMC90381 DOI: 10.1128/aac.45.3.825-836.2001] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ro 63-9141 is a new member of the pyrrolidinone-3-ylidenemethyl cephem series of cephalosporins. Its antibacterial spectrum was evaluated against significant gram-positive and gram-negative pathogens in comparison with those of reference drugs, including cefotaxime, cefepime, meropenem, and ciprofloxacin. Ro 63-9141 showed high antibacterial in vitro activity against gram-positive bacteria except ampicillin-resistant enterococci, particularly vancomycin-resistant strains of Enterococcus faecium. Its MIC at which 90% of the isolates tested were inhibited (MIC(90)) for methicillin-resistant Staphylococcus aureus (MRSA) was 4 microg/ml. Ro 63-9141 was bactericidal against MRSA. Development of resistance to the new compound in MRSA was not observed. Ro 63-9141 was more potent than cefotaxime against penicillin-resistant Streptococcus pneumoniae (MIC(90) = 2 microg/ml). It was active against ceftazidime-susceptible strains of Pseudomonas aeruginosa and against Enterobacteriaceae except Proteus vulgaris and some isolates producing extended-spectrum beta-lactamases. The basis for the antibacterial spectrum of Ro 63-9141 lies in its affinity to essential penicillin-binding proteins, including PBP 2' of MRSA, and its stability towards beta-lactamases. The in vivo findings were in accordance with the in vitro susceptibilities of the pathogens. These data suggest the potential utility of Ro 63-9141 for the therapy of infections caused by susceptible pathogens, including MRSA. Since insufficient solubility of Ro 63-9141 itself precludes parenteral administration in humans, a water-soluble prodrug, Ro 65-5788, is considered for development.
Collapse
Affiliation(s)
- P Hebeisen
- Pharmaceutical Research, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The use of beta-lactamase inhibitors in combination with a beta-lactamase-susceptible antibiotic is a useful strategy to rescue otherwise good antibiotics from failure. However, recent years have seen a rise in the numbers of beta-lactamases that are insensitive to the available beta-lactamase inhibitors. This review summarizes of the mechanisms of action of the principal types of inhibitors and the ways in which beta-lactamase are thought to develop resistance towards them. Ten general classes of inhibitors are reviewed, especially those of therapeutic importance (clavulanic acid, penam sulfones and carbapenems). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Malcolm G. P. Page
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| |
Collapse
|
24
|
Rubinson KA. The polymer basis of kinetics and equilibria of enzymes: the accessible-volume origin of entropy changes in a class Abeta-lactamase. JOURNAL OF PROTEIN CHEMISTRY 1998; 17:771-87. [PMID: 9988524 DOI: 10.1023/a:1020774201253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The occurrence of enzymatic catalysis, as for any chemical reaction, depends critically upon close contact of the reactants, since making/breaking of bonds occurs over distances of about 0.2 A. Unlike small molecules, each enzyme molecule acts as an ordered solvent and reactant. Each group important to the enzyme reaction interacts with the substrate, then moves away, and subsequently binds another substrate. In other words, the group undergoes round trips in structure. For a round trip, the thermochemical state functions deltaG, deltaH, deltaS, etc., are zero. As a consequence, control of the binding of substrate must reside in the nonbinding conformations of the polymer since they govern the different fractions of time the macromolecule is in the correct conformation for bonding. Applying standard macromolecular models to the enzymes suggests that the majority of free energy for an enzyme reaction resides in the enzyme structure as an entropic contribution. Enthalpic contributions come from bond formation with the substrates and substrate structural changes. Further, it is shown that the molecular mechanisms that can effect binding and allosteric control fall into only three classes. Three x-ray structures of class A beta-lactamases (native, mutant, and with substrate) show the individual binding groups at the active site change their accessible volumes depending on substrate binding and mutant form. From these volume differences, the deltaS of reaction is calculated. The x-ray-derived deltaG = - TdeltaS matches the deltaG = -RT ln k1 from changes in rate constants for the same set of beta-penicillinases.
Collapse
Affiliation(s)
- K A Rubinson
- The Five Oaks Research Institute, Cincinnati, Ohio 45238-5157, USA
| |
Collapse
|
25
|
Babini GS, Yuan M, Livermore DM. Interactions of beta-lactamases with sanfetrinem (GV 104326) compared to those with imipenem and with oral beta-lactams. Antimicrob Agents Chemother 1998; 42:1168-75. [PMID: 9593145 PMCID: PMC105767 DOI: 10.1128/aac.42.5.1168] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1997] [Accepted: 01/25/1998] [Indexed: 02/07/2023] Open
Abstract
Sanfetrinem is a trinem beta-lactam which can be administered orally as a hexatil ester. We examined whether its beta-lactamase interactions resembled those of the available carbapenems, i.e., stable to AmpC and extended-spectrum beta-lactamases but labile to class B and functional group 2f enzymes. The comparator drugs were imipenem, oral cephalosporins, and amoxicillin. MICs were determined for beta-lactamase expression variants, and hydrolysis was examined directly with representative enzymes. Sanfetrinem was a weak inducer of AmpC beta-lactamases below the MIC and had slight lability, with a kcat of 0.00033 s(-1) for the Enterobacter cloacae enzyme. Its MICs for AmpC-derepressed E. cloacae and Citrobacter freundii were 4 to 8 microg/ml, compared with MICs of 0.12 to 2 microg/ml for AmpC-inducible and -basal strains; MICs for AmpC-derepressed Serratia marcescens and Morganella morganii were not raised. Cefixime and cefpodoxime were more labile than sanfetrinem to the E. cloacae AmpC enzyme, and AmpC-derepressed mutants showed much greater resistance; imipenem was more stable and retained full activity against derepressed mutants. Like imipenem, sanfetrinem was stable to TEM-1 and TEM-10 enzymes and retained full activity against isolates and transconjugants with various extended-spectrum TEM and SHV enzymes, whereas these organisms were resistant to cefixime and cefpodoxime. Sanfetrinem, like imipenem and cefixime but unlike cefpodoxime, also retained activity against Proteus vulgaris and Klebsiella oxytoca strains that hyperproduced potent chromosomal class A beta-lactamases. Functional group 2f enzymes, including Sme-1, NMC-A, and an unnamed enzyme from Acinetobacter spp., increased the sanfetrinem MICs by up to 64-fold. These enzymes also compromised the activities of imipenem and amoxicillin but not those of the cephalosporins. The hydrolysis of sanfetrinem was examined with a purified Sme-1 enzyme, and biphasic kinetics were found. Finally, zinc beta-lactamases, including IMP-1 and the L1 enzyme of Stenotrophomonas maltophilia, conferred resistance to sanfetrinem and all other beta-lactams tested, and hydrolysis was confirmed with the IMP-1 enzyme. We conclude that sanfetrinem has beta-lactamase interactions similar to those of the available carbapenems except that it is a weaker inducer of AmpC types, with some tendency to select derepressed mutants, unlike imipenem and meropenem.
Collapse
Affiliation(s)
- G S Babini
- Antibiotic Group, St Bartholomew's and the Royal London School of Medicine and Dentistry, United Kingdom
| | | | | |
Collapse
|
26
|
Dubus A, Ledent P, Lamotte-Brasseur J, Frère JM. The roles of residues Tyr150, Glu272, and His314 in class C beta-lactamases. Proteins 1996; 25:473-85. [PMID: 8865342 DOI: 10.1002/prot.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serine beta-lactamases contribute widely to the beta-lactam resistance phenomena. Unfortunately, the intimate details of their catalytic mechanism remain elusive and subject to some controversy even though many "natural" and "artificial" mutants of these different enzymes have been isolated. This paper is essentially focused on class C beta-lactamases, which contain a Tyr (Tyr150) as the first residue of the second conserved element, in contrast to their class A counterparts, in which a Ser is found in the corresponding position. We have modified this Tyr residue by site-directed mutagenesis. On the basis of the three-dimensional structure of the Enterobacter cloacae P99 enzyme, it seemed that residues Glu272 and His314 might also be important. They were similarly substituted. The modified enzymes were isolated and their catalytic properties determined. Our results indicated that His314 was not required for catalysis and that Glu272 did not play an important role in acylation but was involved to a small extent in the deacylation process. Conversely, Tyr150 was confirmed to be central for catalysis, at least with the best substrates. On the basis of a comparison of data obtained for several class C enzyme mutants and in agreement with recent structural data, we propose that the phenolate anion of Tyr150, in conjunction with the alkyl ammonium of Lys315, acts as the general base responsible for the activation of the active-site Ser64 during the acylation step and for the subsequent activation of a water molecule in the deacylation process. The evolution of the important superfamily of penicillin-recognizing enzymes is further discussed in the light of this proposed mechanism.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liége, Belgium
| | | | | | | |
Collapse
|
27
|
|
28
|
Page MG. The reaction of cephalosporins with penicillin-binding protein 1b gamma from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1205:199-206. [PMID: 8155698 DOI: 10.1016/0167-4838(94)90234-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kinetics of the reaction of purified penicillin-binding protein 1b gamma from Escherichia coli with cephalosporins suggest that the enzyme exists in two kinetically distinct conformations that are in slow equilibrium. One of these forms can effect rapid hydrolysis of some beta-lactams and it is only through its deactivation by conversion to the slower reacting form that complete inhibition can be achieved. With some cephalosporins and with penicillins having simple aromatic side-chains the reaction was slower and did not exhibit the same kinetic behaviour. This could be attributed to the rate of reaction being similar to the rate of conformation change and thus sets an upper limit on the isomerization rate.
Collapse
Affiliation(s)
- M G Page
- Pharma Division, F. Hoffmann La Roche Ltd., Basel, Switzerland
| |
Collapse
|