1
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
2
|
Zhai N, Lu Y, Wang Y, Zhang S, Peng C, Zhang S, Li T, Chen M, Liu J, Fang F, Ren X, Han J. Splice receptor-site mutation c.697-2A>G of the COL1A1 gene in a Chinese family with osteogenesis imperfecta. Intractable Rare Dis Res 2019; 8:150-153. [PMID: 31218168 PMCID: PMC6557241 DOI: 10.5582/irdr.2019.01046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and blue sclerae, which are mainly caused by a mutation of the COL1A1 or COL1A2 genes that encode type I procollagen. Mutations in the splice site of type I collagen genes are one of the mutations that cause OI and usually lead to a mild or moderate OI phenotype. A heterozygous A to G point mutation in intron 9 at the -2 position of the splice receptor site of COL1A1 was identified in a family with type I or IV OI. Three affected individuals in four generations of one family all presented with several clinical symptoms. They all had pectus carinatum, flat feet, gray-blue sclerae, and normal stature, teeth, hearing, and vision. Forearm fractures, small joint dislocations, and muscle weakness were all present in the patient's father and grandmother, who presented with a moderate type IV phenotype. The 10-year-old proband with type I OI had suffered a fracture twice, but had no history of joint dislocation or skin hyperextensibility. Charting the family helped to identify clinical symptoms in patients with mutations at the N-terminal of type I collagen genes.
Collapse
Affiliation(s)
- Naixiang Zhai
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanzhou Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Shie Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Chuanming Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Shanshan Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Tianyou Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Mei Chen
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Junlong Liu
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Fengling Fang
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
- Address correspondence to:Dr. Jinxiang Han, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail:
| | - Jinxiang Han
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail:
| |
Collapse
|
3
|
An ENU-induced splice site mutation of mouse Col1a1 causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Sci Rep 2017; 7:11717. [PMID: 28916811 PMCID: PMC5600972 DOI: 10.1038/s41598-017-10343-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
GU-AG consensus sequences are used for intron recognition in the majority of cases of pre-mRNA splicing in eukaryotes. Mutations at splice junctions often cause exon skipping, short deletions, or insertions in the mature mRNA, underlying one common molecular mechanism of genetic diseases. Using N-ethyl-N-nitrosourea, a novel recessive mutation named seal was produced, associated with fragile bones and susceptibility to fractures (spine and limbs). A single nucleotide transversion (T → A) at the second position of intron 36 of the Col1a1 gene, encoding the type I collagen, α1 chain, was responsible for the phenotype. Col1a1 seal mRNA expression occurred at greatly reduced levels compared to the wild-type transcript, resulting in reduced and aberrant collagen fibers in tibiae of seal homozygous mice. Unexpectedly, splicing of Col1a1 seal mRNA followed the normal pattern despite the presence of the donor splice site mutation, likely due to the action of a putative intronic splicing enhancer present in intron 25, which appeared to function redundantly with the splice donor site of intron 36. Seal mice represent a model of human osteogenesis imperfecta, and reveal a previously unknown mechanism for splicing "rescue."
Collapse
|
4
|
Buratti E, Baralle M, De Conti L, Baralle D, Romano M, Ayala YM, Baralle FE. hnRNP H binding at the 5' splice site correlates with the pathological effect of two intronic mutations in the NF-1 and TSHbeta genes. Nucleic Acids Res 2004; 32:4224-36. [PMID: 15299088 PMCID: PMC514374 DOI: 10.1093/nar/gkh752] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have recently reported a disease-causing substitution (+5G > C) at the donor site of NF-1 exon 3 that produces its skipping. We have now studied in detail the splicing mechanism involved in analyzing RNA-protein complexes at several 5' splice sites. Characteristic protein patterns were observed by pulldown and band-shift/super-shift analysis. Here, we show that hnRNP H binds specifically to the wild-type GGGgu donor sequence of the NF-1 exon 3. Depletion analyses shows that this protein restricts the accessibility of U1 small nuclear ribonucleoprotein (U1snRNA) to the donor site. In this context, the +5G > C mutation abolishes both U1snRNP base pairing and the 5' splice site (5'ss) function. However, exon recognition in the mutant can be rescued by disrupting the binding of hnRNP H, demonstrating that this protein enhances the effects of the +5G > C substitution. Significantly, a similar situation was found for a second disease-causing +5G > A substitution in the 5'ss of TSHbeta exon 2, which harbors a GGgu donor sequence. Thus, the reason why similar nucleotide substitutions can be either neutral or very disruptive of splicing function can be explained by the presence of specific binding signatures depending on local contexts.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Roca X, Sachidanandam R, Krainer AR. Intrinsic differences between authentic and cryptic 5' splice sites. Nucleic Acids Res 2003; 31:6321-33. [PMID: 14576320 PMCID: PMC275472 DOI: 10.1093/nar/gkg830] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 08/25/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5' splice sites (5'ss), we systematically analyzed a set of 76 cryptic 5'ss derived from 46 human genes. These cryptic 5'ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5'ss. Statistical analysis of the strengths of the 5'ss using the Shapiro and Senapathy matrix revealed that authentic 5'ss have significantly higher score values than cryptic 5'ss, which in turn have higher values than the mutant ones. beta-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the beta-globin authentic and cryptic 5'ss, but not their surrounding context, determine the correct 5'ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5'ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5'ss-disrupting mutations at the mRNA level.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
6
|
Abstract
Considerable progress has been made in many aspects of osteogenesis imperfecta. The international Sillence classification of osteogenesis imperfecta is being expanded to include a greater range of subgroups of patients. Attempts are being made to identify the genes causing forms of osteogenesis imperfecta and related syndromes that are not caused by mutations of the Type I collagen genes. In medium-term studies, bisphosphonate treatment has been shown to be the first method of treatment to improve the clinical course of the disease significantly. Somatic cell therapy, using allogeneic bone marrow and mesenchymal stromal cell transplantation, are in their early phases of development for use in humans with osteogenesis imperfecta. Somatic gene therapy, which aims to inactivate the mutation, is being evaluated in laboratory and animal studies.
Collapse
Affiliation(s)
- William G Cole
- Division of Orthopaedics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Pohlenz J, Dumitrescu A, Aumann U, Koch G, Melchior R, Prawitt D, Refetoff S. Congenital secondary hypothyroidism caused by exon skipping due to a homozygous donor splice site mutation in the TSHbeta-subunit gene. J Clin Endocrinol Metab 2002; 87:336-9. [PMID: 11788671 DOI: 10.1210/jcem.87.1.8154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Isolated TSH deficiency as a cause for congenital hypothyroidism is relatively uncommon. Even more rare is the identification of mutations in the TSHbeta gene, only four of which have been identified. We here report a 4-month-old girl with isolated TSH deficiency born to consanguineous parents. Sequencing of the TSHbeta-subunit gene revealed a homozygous G to A transition at position +5 of the donor splice site of intron 2. TSHbeta gene transcript could not be obtained from fibroblasts or white blood cells by illegitimate amplification. Thus, to investigate further the mechanism leading to TSH deficiency in this patient, we used an in vitro exon-trapping system. The mutation at position +5 of the donor splicing site produced a skip of exon 2. The putative product of translation from a downstream start site is expected to yield a severely truncated peptide of 25 amino acids. Surprisingly, a missense substitution affecting the 14th amino acid of the signal peptide (SigP A14T) was found in one allele of the mother and brother. SigP 14T is polymorphic with a frequency of 1.8% and has no functional consequence.
Collapse
Affiliation(s)
- Joachim Pohlenz
- Children's Hospital, Johannes Gutenberg University of Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Croucher LJ, Hollander AP. Differential detection of type II collagen N-terminal and C-terminal denaturation epitopes in degrading cartilage. Mol Pathol 1999; 52:323-31. [PMID: 10748865 PMCID: PMC395717 DOI: 10.1136/mp.52.6.323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To investigate the relative stability of collagen metabolites in degrading cartilage. METHODS New antipeptide antibodies to denaturation epitopes located in the N-terminal and C-terminal regions of the type II collagen helix have been made and characterized. Type II collagen fragments in the conditioned medium from cultures of degrading bovine nasal cartilage were detected by immunoblotting with the new antisera as well as by N-terminal sequencing. The antibodies were also used in immunohistochemical studies of normal and osteoarthritic human cartilage. RESULTS Type II collagen fragments with an apparent molecular mass of approximately 30 kDa were detected in cartilage conditioned media using antibody AH12L3, which recognizes N-terminal epitope AH12. The N-terminal sequence of one of these fragments matched exactly a sequence in the N-terminal region of type II collagen. Antibody AH9L2, which recognizes C-terminal epitope AH9, did not bind to any protein bands in the immunoblotted culture medium. In immunohistochemical studies, antibody AH12L3 detected extensive regions of degraded collagen in osteoarthritic cartilage and a more restricted pattern of staining in nonarthritic cartilage. Far less immunostaining was apparent in all cartilage specimens with antibody AH9L2. CONCLUSIONS These results indicate that the N-terminal region of type II collagen is more resistant to proteolysis than the C-terminal region, an observation that has important implications for the choice of epitopes that are likely to be good markers of damage to cartilage collagen in patients with arthritis.
Collapse
Affiliation(s)
- L J Croucher
- Division of Biochemical and Musculoskeletal Medicine, University of Sheffield Medical School, UK
| | | |
Collapse
|
9
|
Schwarze U, Starman BJ, Byers PH. Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor-site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation. Am J Hum Genet 1999; 65:336-44. [PMID: 10417276 PMCID: PMC1377932 DOI: 10.1086/302512] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Most splice-site mutations lead to a limited array of products, including exon skipping, use of cryptic splice-acceptor or -donor sites, and intron inclusion. At the intron 8 splice-donor site of the COL1A1 gene, we identified a G+1-->A transition that resulted in the production of several splice products from the mutant allele. These included one in which the upstream exon 7 was extended by 96 nt, others in which either intron 8 or introns 7 and 8 were retained, one in which exon 8 was skipped, and one that used a cryptic donor site in exon 8. To determine the mechanism by which exon-7 redefinition might occur, we examined the order of intron removal in the region of the mutation by using intron/exon primer pairs to amplify regions of the precursor nuclear mRNA between exon 5 and exon 10. Removal of introns 5, 6, and 9 was rapid. Removal of intron 8 usually preceded removal of intron 7 in the normal gene, although, in a small proportion of copies, the order was reversed. The proportion of abnormal products suggested that exon 7 redefinition, intron 7 plus intron 8 inclusion, and exon 8 skipping all represented products of the impaired rapid pathway, whereas the intron-8 inclusion product resulted from use of the slow intron 7-first pathway. The very low-abundance cryptic exon 8 donor site product could have arisen from either pathway. These results suggest that there is commitment of the pre-mRNA to the two pathways, independent of the presence of the mutation, and that the order and rate of intron removal are important determinants of the outcome of splice-site mutations and may explain some unusual alterations.
Collapse
Affiliation(s)
- U Schwarze
- Departments of Pathology and Medicine, University of Washington, Seattle, WA 98195-7470, USA
| | | | | |
Collapse
|
10
|
Holden P, Canty EG, Mortier GR, Zabel B, Spranger J, Carr A, Grant ME, Loughlin JA, Briggs MD. Identification of novel pro-alpha2(IX) collagen gene mutations in two families with distinctive oligo-epiphyseal forms of multiple epiphyseal dysplasia. Am J Hum Genet 1999; 65:31-8. [PMID: 10364514 PMCID: PMC1378072 DOI: 10.1086/302440] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous disorder with marked clinical and radiographic variability. Traditionally, the mild "Ribbing" and severe "Fairbank" types have been used to define a broad phenotypic spectrum. Mutations in the gene encoding cartilage oligomeric-matrix protein have been shown to result in several types of MED, whereas mutations in the gene encoding the alpha2 chain of type IX collagen (COL9A2) have so far been found only in two families with the Fairbank type of MED. Type IX collagen is a heterotrimer of pro-alpha chains derived from three distinct genes-COL9A1, COL9A2, and COL9A3. In this article, we describe two families with distinctive oligo-epiphyseal forms of MED, which are heterozygous for different mutations in the COL9A2 exon 3/intron 3 splice-donor site. Both of these mutations result in the skipping of exon 3 from COL9A2 mRNA, but the position of the mutation in the splice-donor site determines the stability of the mRNA produced from the mutant COL9A2 allele.
Collapse
Affiliation(s)
- P Holden
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, England, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brandsten C, Lundmark C, Christersson C, Hammarström L, Wurtz T. Expression of collagen alpha1(I) mRNA variants during tooth and bone formation in the rat. J Dent Res 1999; 78:11-9. [PMID: 10065941 DOI: 10.1177/00220345990780010101] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Collagen alpha1(I) mRNA is composed of two variants of 5 and 6 kb, differing in the length of the 3' untranslated region. In this work, the nucleotide sequences of the two rat mRNA variants were compared, and their expression pattern in cells forming bone, dentin, and cementum were analyzed. The sequences were determined from cDNA inserts of tooth and bone libraries plus directly from PCR fragments, obtained from bone. A total of 5721 bases of the rat collagen alpha1(I) sequence from cDNA of tooth and bone was determined. All sequences of the short variant were represented in the long variant. Only the alternatively poly-A additions gave rise to the variants in hard tissue. Two oligonucleotides were chosen as probes, one of which recognized, on Northern blots, the two bands of 5 and 6 kb, and the other the 6-kb variant only. The oligonucleotides were used in in situ hybridization experiments, for study of the distribution of the variants in different extracellular matrix-forming cells. Osteoblasts, odontoblasts, and cementum-associated cells were closely examined in sections from rat maxillae from 2 to 25 days of age. A similar or identical pattern of mRNA expression was observed with both oligonucleotides, indicating that the two mRNA variants were co-expressed in all cases.
Collapse
Affiliation(s)
- C Brandsten
- Center for Oral Biology, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
12
|
Aszódi A, Chan D, Hunziker E, Bateman JF, Fässler R. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Biophys Biochem Cytol 1998; 143:1399-412. [PMID: 9832566 PMCID: PMC2133086 DOI: 10.1083/jcb.143.5.1399] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collagen II is a fibril-forming collagen that is mainly expressed in cartilage. Collagen II-deficient mice produce structurally abnormal cartilage that lacks growth plates in long bones, and as a result these mice develop a skeleton without endochondral bone formation. Here, we report that Col2a1-null mice are unable to dismantle the notochord. This defect is associated with the inability to develop intervertebral discs (IVDs). During normal embryogenesis, the nucleus pulposus of future IVDs forms from regional expansion of the notochord, which is simultaneously dismantled in the region of the developing vertebral bodies. However, in Col2a1-null mice, the notochord is not removed in the vertebral bodies and persists as a rod-like structure until birth. It has been suggested that this regional notochordal degeneration results from changes in cell death and proliferation. Our experiments with wild-type mice showed that differential proliferation and apoptosis play no role in notochordal reorganization. An alternative hypothesis is that the cartilage matrix exerts mechanical forces that induce notochord removal. Several of our findings support this hypothesis. Immunohistological analyses, in situ hybridization, and biochemical analyses demonstrate that collagens I and III are ectopically expressed in Col2a1-null cartilage. Assembly of the abnormal collagens into a mature insoluble matrix is retarded and collagen fibrils are sparse, disorganized, and irregular. We propose that this disorganized abnormal cartilage collagen matrix is structurally weakened and is unable to constrain proteoglycan-induced osmotic swelling pressure. The accumulation of fluid leads to tissue enlargement and a reduction in the internal swelling pressure. These changes may be responsible for the abnormal notochord removal in Col2a1-null mice. Our studies also show that chondrocytes do not need a collagen II environment to express cartilage-specific matrix components and to hypertrophy. Furthermore, biochemical analysis of collagen XI in mutant cartilage showed that alpha1(XI) and alpha2 (XI) chains form unstable collagen XI molecules, demonstrating that the alpha3(XI) chain, which is an alternative, posttranslationally modified form of the Col2a1 gene, is essential for assembly and stability of triple helical collagen XI.
Collapse
Affiliation(s)
- A Aszódi
- Department of Experimental Pathology, Lund University, 22185 Lund, Sweden
| | | | | | | | | |
Collapse
|
13
|
O'Neill JP, Rogan PK, Cariello N, Nicklas JA. Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. Mutat Res 1998; 411:179-214. [PMID: 9804951 DOI: 10.1016/s1383-5742(98)00013-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a database of human HPRT mutations, 277 of 2224 (12.5%) mutations result in alterations in splicing of the mRNA as analyzed by both reverse transcriptase mediated production of a cDNA followed by PCR amplification and cDNA sequencing and by genomic DNA PCR amplification and sequencing. Mutations have been found in all eight 5' (donor) and 3' (acceptor) splice sequences. Mutations in the 5' splice sequences of introns 1 and 5 result in intron inclusion in the cDNA due to the use of cryptic donor splice sequences within the introns; mutations in the other six 5' sites result in simple exon exclusion. Mutations in the 3' splice sequences of introns 1, 3, 7 and 8 result in partial exon exclusion due to the use of cryptic acceptor splice sequences within the exons; mutations in the other four 3' sites result in simple exon exclusion. A base substitution in exon 3 (209G-->T) creates a new 5' (donor) splice site which results in the exclusion of 110 bases of exon 3 from the cDNA. Two base substitutions in intron 8 (IVS8-16G-->A and IVS8-3T-->G) result in the inclusion of intron 8 sequences in the cDNA due to the creation of new 3' (acceptor) splice sites. Base substitution within exons 1, 3, 4, 6 and 8 also result in splice alterations in cDNA. Those in exons 1 and 6 are at the 3' end of the exon and may directly affect splicing. Those within exons 3 and 4 may be the result of the creation of nonsense codons, while those in exon 8 cannot be explained by this mechanism. Lastly, many mutations that affect splicing of the HPRT mRNA have pleiotropic effects in that multiple cDNA products are found.
Collapse
Affiliation(s)
- J P O'Neill
- University of Vermont Genetics Laboratory, 32 North Prospect Street, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
14
|
Engfelt WH, Masuda KR, Paton VG, Krisans SK. Splice donor site mutations in the 3-hydroxy-3-methylglutaryl coenzyme A reductase gene cause a deficiency of the endoplasmic reticulum 3-hydroxy-3-methylglutaryl coenzyme A reductase protein in UT2 cells. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32473-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Fernandes RJ, Wilkin DJ, Weis MA, Wilcox WR, Cohn DH, Rimoin DL, Eyre DR. Incorporation of structurally defective type II collagen into cartilage matrix in kniest chondrodysplasia. Arch Biochem Biophys 1998; 355:282-90. [PMID: 9675039 DOI: 10.1006/abbi.1998.0745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kniest dysplasia, a human chondrodysplasia that severely affects skeletal growth, is caused by mutations in the type II collagen gene, COL2A1. We report here on abnormal type II collagen in the cartilage from a lethal Kniest dysplasia case and identify a novel exon-skipping mutation. Screening of cyanogen bromide (CB) peptides from the cartilage samples by SDS-PAGE indicated an abnormality in peptide alpha1(II)CB11. Further peptide mapping and N-terminal sequence analysis showed a 15-amino-acid deletion encoded by exon 15 in about 25% of the alpha1(II) chains in the cartilage. The mutation responsible for exon skipping was found by sequencing amplified genomic DNA. The baby was heterozygous for a G to A transition at the first position of the splice donor of intron 15. Pepsin-solubilized type II collagen from the cartilage matrix contained both normal alpha1(II) and shortened chains expressed from the mutant allele. Trypsin cleaved the native molecules below 37 degrees C selectively at a site within the exon 15-encoded domain of the normal alpha1(II) chains. This is best explained by the coassembly of normal and truncated alpha1(II) chains into heterotrimers in which the triple helix is normally folded in both directions from the deletion site but the latter presents a region of local disruption. The findings support an emerging pattern of COL2A1 mutations that can cause Kniest dysplasia. Short deletions (single or partial exon) clustered in one region of the alpha1(II) chain are favored, resulting in abnormal heterotrimeric molecules that become a significant component of the cartilage extracellular matrix.
Collapse
Affiliation(s)
- R J Fernandes
- Department of Orthopaedics, University of Washington, Seattle, Washington, 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Adams EM, Becker JA, Griffith L, Segal A, Plotz PH, Raben N. Glycogenosis type II: a juvenile-specific mutation with an unusual splicing pattern and a shared mutation in African Americans. Hum Mutat 1997; 10:128-34. [PMID: 9259196 DOI: 10.1002/(sici)1098-1004(1997)10:2<128::aid-humu5>3.0.co;2-g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recessively inherited deficiency of acid alpha-glucosidase (GAA) called Glycogenosis Type II is expressed as three different phenotypes: infantile, juvenile, and adult. At the molecular level, infantile and adult forms of the disease have been extensively studied, but little is known regarding the genetic defects associated with the juvenile form. We describe a novel mutation that defines the intermediate juvenile phenotype in a compound heterozygous patient. A transversion of t to g in intron 6 at position -22 creates a cryptic acceptor site and results in unusual splicing abnormality: insertion of 21 nucleotides of the intronic sequence into mRNA and removal of exon 6 without disruption of the reading frame. The second mutation, Arg854Stop in exon 18, had been previously identified in another African-American patient (Hermans et al., 1993a). Family study indicates that a silent allele harboring the Arg854Stop mutation in our patient is inherited from the patient's father, who is also African-American, thus suggesting a common mutation in this population.
Collapse
Affiliation(s)
- E M Adams
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang Q, Forlino A, Marini JC. Alternative splicing in COL1A1 mRNA leads to a partial null allele and two In-frame forms with structural defects in non-lethal osteogenesis imperfecta. J Biol Chem 1996; 271:28617-23. [PMID: 8910493 DOI: 10.1074/jbc.271.45.28617] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have identified a novel multiexon genomic deletion in one COL1A1 collagen allele that results in three alternative forms of mutant mRNA. This mutation occurs in a 9-year-old girl and her father, both affected with severe type III osteogenesis imperfecta (OI). We previously reported detection of a mismatch in their alpha1(I) amino acids 558-861 region by RNA/RNA hybrid analysis (Grange, D. K., Gottesman, G. S., Lewis, M. B., and Marini, J. C. (1990) Nucleic Acids Res. 18, 4227-4236). Single Strand Conformational Polymorphism further localized the mRNA mutation to the amino acids 579-679 coding region. At the gene level, polymerase chain reaction (PCR) amplification of patient leukocyte DNA from the exon 33-38 region yielded the normal 1004-base pair (bp) fragment and an additional 442-bp fragment. Sequencing of the shorter genomic PCR product confirmed the presence of a 562-bp deletion, extending from the last 3 nucleotides (nt) of exon 34 to 156 nt from the 3'-end of intron 36. The genomic deletion was also detected in the clinically normal grandmother, who was confirmed to be a mosaic carrier. PCR amplification and RNase protection experiments were used to investigate the mRNA structure and occurrence of alternative splicing. One form of the mutant cDNA has a deletion with end points that are identical to the genomic deletion. This results in a combination deletion/insertion, with a deletion of amino acids 603-639 followed by an insertion of 156 nt from the 3'-end of intron 36. In addition, we found two alternatively spliced forms. One form uses a cryptic donor site in exon 34 and the exon 37 acceptor. The second form uses the normal exon 32 splice donor and exon 37 acceptor. Use of the cryptic donor results in a coding sequence that is out-of-frame. Both the retained intron form and the use of the exon 32 donor site result in coding sequences that are in-frame. This is the first report of a collagen defect in OI with alternative splicing generating both in-frame and out-of-frame forms of mRNA. Although the in-frame forms constitute more than 60% of the mRNA from the mutant allele, no mutant protein chain was identified. Collagen produced by cultured OI osteoblasts showed a significant increase in the relative amount of type III collagen but no mutant alpha1(I) chain.
Collapse
Affiliation(s)
- Q Wang
- Section on Connective Tissue Disorders, Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | |
Collapse
|
19
|
Mundlos S, Chan D, Weng YM, Sillence DO, Cole WG, Bateman JF. Multiexon deletions in the type I collagen COL1A2 gene in osteogenesis imperfecta type IB. Molecules containing the shortened alpha2(I) chains show differential incorporation into the bone and skin extracellular matrix. J Biol Chem 1996; 271:21068-74. [PMID: 8702873 DOI: 10.1074/jbc.271.35.21068] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Osteogenesis imperfecta (OI) type IB is a rare subset of the mildest form of OI, clinically characterized by moderate bone fragility, blue sclera, and dentinogenesis imperfecta. Cultured skin fibroblasts from two unrelated individuals (OI-197 and OI-165) with the typical features of OI type IB produced shortened alpha2(I) chains. Reverse transcription-polymerase chain reaction of the alpha2(I)-cDNA revealed deletions in the triple helical domain of 5 exons (exons 7-11) in OI-197, and 8 exons (exons 10-17) in OI-165. This exon skipping was caused by genomic deletions in one allele of COL1A2 with the breakpoints located in introns 6 and 11 in OI-197, and introns 9 and 17 in OI-165. The secretion and deposition of the mutant collagen into the matrix was measured in vitro in cultures of skin fibroblasts and bone osteoblasts, grown in the presence of ascorbic acid to induce collagen matrix formation and maturation, as well as in collagen extracts from skin and bone. The secretion of mutant collagen was impaired and long term cultures of fibroblasts showed that the mutant collagen was not incorporated into the mature collagenous matrix produced in vitro by skin fibroblasts from both patients. Likewise, the shortened alpha2(I) chain was not demonstrable in skin extracts. In contrast, bone extracts from OI-197 showed the presence of the mutant collagen. This incorporation of the abnormal collagen into the mature matrix was also demonstrated in long term cultures of the patient's osteoblasts. The deposition of the mutant collagen by bone osteoblasts but not by skin fibroblasts demonstrates a tissue specificity in the incorporation of mutant collagen into the matrix which may explain the primary involvement of bone and not skin in these patients.
Collapse
Affiliation(s)
- S Mundlos
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|