1
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
2
|
Maharem TM, Emam MA, Said YA. Purification and characterization of l-glutaminase enzyme from camel liver: Enzymatic anticancer property. Int J Biol Macromol 2020; 150:1213-1222. [PMID: 31743703 DOI: 10.1016/j.ijbiomac.2019.10.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
l-Glutaminase has gained an important attention as glutamine-depleting enzyme in treatment of various cancers. Therefore, this study aimed to purify, characterize and investigate antitumor activity of l-glutaminase from camel liver mitochondria (CL-Glu), since no available information about CL-Glu from camel. CL-Glu was purified using cell fractionation, ultrafiltration, DEAE-and CM-cellulose chromatography columns. The purified CL-Glu was a monomer with a molecular weight of 70 ± 3 kDa, isoelectric point of 7.2, optimum temperature of 70 °C and it was active over a broad pH range with a pH optimum at pH 8.0. Its activity had a clear dependence on phosphate ions. The studied enzyme showed sigmoidal kinetics, indicated its allosteric behavior with Km of 36 ± 4 mM and Hill coefficient of 1.5 which suggested a positive cooperatively of active sites. The purified l-glutaminase exerted antitumor activity against different cell lines with the highest cytotoxic activity against Hepatocellular carcinoma cell line (HepG-2) with an IC50 value of 152 µg/ml. In conclusion, l-glutaminase was purified from camel liver using simple methods and its unique properties such as stability at both wide pH range and at high temperature along with its relatively low molecular weight, facilitated its usage in medical applications as antitumor drug.
Collapse
Affiliation(s)
- Tahany M Maharem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Manal A Emam
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Youssef A Said
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
3
|
Jegatheesan P, Ramani D, Lhuillier M, El-Hafaia N, Ramassamy R, Aboubacar M, Nakib S, Chen H, Garbay C, Neveux N, Loï C, Cynober L, de Bandt JP. Is N-Carbamoyl Putrescine, the Decarboxylation Derivative of Citrulline, a Regulator of Muscle Protein Metabolism in Rats? Nutrients 2019; 11:nu11112637. [PMID: 31684160 PMCID: PMC6893778 DOI: 10.3390/nu11112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
N-carbamoyl putrescine (NCP), the decarboxylation derivative of citrulline, metabolically related to polyamines, may exert biological effects in mammals. The aim of this study was (i) to evaluate the nutritional properties of NCP in healthy rats and (ii) to determine the effect of NCP administration on muscle metabolism in malnourished old rats. The nutritional properties of NCP were first evaluated in 20 8-week-old male rats randomized to receive for two weeks a standard diet either alone (C group) or supplemented with NCP, 5 or 50 mg/kg/d. In a second study, 29 malnourished 18-month-old male rats were studied either before or after a 4-day refeeding with a standard diet either alone (REN group) or supplemented with NCP, 1 or 10 mg/kg/d. NCP had no effect on weight gain and body composition in either of the two studies. In healthy rats, muscle protein content was significantly increased in the soleus with NCP 5 mg/kg/d. A decrease in plasma glutamine and kidney spermine was observed at the 50 mg/kg/d dose; otherwise, no significant changes in plasma chemistry and tissue polyamines were observed. In malnutrition-induced sarcopenic old rats, refeeding with NCP 10 mg/kg/d was associated with higher tibialis weight and a trend for increased protein content in extensor digitorum longus (EDL). While the muscle protein synthesis rate was similar between groups, ribosomal protein S6 kinase was increased in tibialis and higher in the EDL in NCP-treated rats. The muscle RING-finger protein-1 expression was decreased in tibialis and urinary 3-methyl-histidine to creatinine ratio slightly lower with the supply of NCP. However, this initial period of refeeding was also associated with elevated fasted plasma triglycerides and glucose, significant in NCP groups, suggesting glucose intolerance and possibly insulin resistance. NCP was well-tolerated in healthy young-adults and in malnourished old rats. In healthy adults, NCP at 5 mg/kg/d induced a significant increase in protein content in the soleus, a type I fiber-rich muscle. In malnourished old rats, NCP supply during refeeding, may help to preserve lean mass by limiting protein breakdown; however, these effects may be limited in our model by a possible immediate refeeding-associated glucose intolerance.
Collapse
Affiliation(s)
| | - David Ramani
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Mickael Lhuillier
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Naouel El-Hafaia
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Radji Ramassamy
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Mohamed Aboubacar
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Samir Nakib
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Huixiong Chen
- Laboratory of Pharmacologic and Toxicologic Chemistry and Biochemistry, UMR 8601 CNRS, Paris Descartes University, 75270 Paris, France.
| | - Christiane Garbay
- Laboratory of Pharmacologic and Toxicologic Chemistry and Biochemistry, UMR 8601 CNRS, Paris Descartes University, 75270 Paris, France.
| | - Nathalie Neveux
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Cécile Loï
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Luc Cynober
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Jean-Pascal de Bandt
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| |
Collapse
|
4
|
Stránská J, Tylichová M, Kopecný D, Snégaroff J, Sebela M. Biochemical characterization of pea ornithine-delta-aminotransferase: substrate specificity and inhibition by di- and polyamines. Biochimie 2010; 92:940-8. [PMID: 20381578 DOI: 10.1016/j.biochi.2010.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
Ornithine-delta-aminotransferase (OAT, EC 2.6.1.13) catalyzes the transamination of L-ornithine to L-glutamate-gamma-semialdehyde. The physiological role of OAT in plants is not yet well understood. It is probably related to arginine catabolism resulting in glutamate but the enzyme has also been associated with stress-induced proline biosynthesis. We investigated the enzyme from pea (PsOAT) to assess whether diamines and polyamines may serve as substrates or they show inhibitory properties. First, a cDNA coding for PsOAT was cloned and expressed in Escherichia coli to obtain a recombinant protein with a C-terminal 6xHis tag. Recombinant PsOAT was purified under native conditions by immobilized metal affinity chromatography and its molecular and kinetic properties were characterized. Protein identity was confirmed by peptide mass fingerprinting after proteolytic digestion. The purified PsOAT existed as a monomer of 50 kDa and showed typical spectral properties of enzymes containing pyridoxal-5'-phosphate as a prosthetic group. The cofactor content of PsOAT was estimated to be 0.9 mol per mol of the monomer by a spectrophotometric analysis with phenylhydrazine. L-Ornithine was the best substrate (K(m)=15 mM) but PsOAT also slowly converted N(alpha)-acetyl-L-ornithine. In these reactions, 2-oxoglutarate was the exclusive amino group acceptor (K(m)=2mM). The enzyme had a basic optimal pH of 8.8 and displayed relatively high temperature optimum. Diamines and polyamines were not accepted as substrates. On the other hand, putrescine, spermidine and others represented weak non-competitive inhibitors. A model of the molecular structure of PsOAT was obtained using the crystal structure of human OAT as a template.
Collapse
Affiliation(s)
- Jana Stránská
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
6
|
Engler JA, Gottesman JM, Harkins JC, Urazaev AK, Lieberman EM, Grossfeld RM. Properties of glutaminase of crayfish CNS: implications for axon-glia signaling. Neuroscience 2002; 114:699-705. [PMID: 12220571 DOI: 10.1016/s0306-4522(02)00357-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutaminase of crayfish axons is believed to participate in recycling of axon-glia signaling agent(s). We measured the activity and properties of glutaminase in crude homogenates of crayfish CNS, using ion exchange chromatography to separate radiolabeled product from substrate. Crayfish glutaminase activity is cytoplasmic and/or weakly bound to membranes and dependent on time, tissue protein, and glutamine concentration. It resembles the kidney-type phosphate-activated glutaminase of mammals in being stimulated by inorganic phosphate and alkaline pH and inhibited by the product glutamate and by the glutamine analog 6-diazo-5-oxo-L-norleucine. During incubation of crayfish CNS fibers in Na(+)-free saline containing radiolabeled glutamine, there is an increased formation of radiolabeled glutamate in axoplasm that is temporally associated with an increase in axonal pH from about 7.1 to about 8.0. Both the formation of glutamate and the change in pH are reduced by 6-diazo-5-oxo-L-norleucine. Our results suggest that crayfish glutaminase activity is regulated by cellular changes in pH and glutamate concentration. Such changes could impact availability of the axon-glia signaling agents glutamate and N-acetylaspartylglutamate.
Collapse
Affiliation(s)
- J A Engler
- Zoology Department and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | |
Collapse
|
7
|
Häussinger D. Hepatic glutamine transport and metabolism. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:43-86. [PMID: 9559051 DOI: 10.1002/9780470123188.ch3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the liver was long known to play a major role in the uptake, synthesis, and disposition of glutamine, metabolite balance studies across the whole liver yielded apparently contradictory findings suggesting that little or no net turnover of glutamine occurred in this organ. Efforts to understand the unique regulatory properties of hepatic glutaminase culminated in the conceptual reformulation of the pathway for glutamine synthesis and turnover, especially as regards the role of sub-acinar distribution of glutamine synthetase and glutaminase. This chapter describes these processes as well as the role of glutamine in hepatocellular hydration, a process that is the consequence of cumulative, osmotically active uptake of glutamine into cells. This topic is also examined in terms of the effects of cell swelling on the selective stimulation or inhibition of other far-ranging cellular processes. The pathophysiology of the intercellular glutamine cycle in cirrhosis is also considered.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
8
|
Rodríguez-Zavala JS, Moreno-Sánchez R. Modulation of oxidative phosphorylation by Mg2+ in rat heart mitochondria. J Biol Chem 1998; 273:7850-5. [PMID: 9525878 DOI: 10.1074/jbc.273.14.7850] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of varying the Mg2+ concentration on the 2-oxoglutarate dehydrogenase (2-OGDH) activity and the rate of oxidative phosphorylation of rat heart mitochondria was studied. The ionophore A23187 was used to modify the mitochondrial free Mg2+ concentration. Half-maximal stimulation (K0.5) of ATP synthesis by Mg2+ was obtained with 0.13 +/- 0.02 mM (n = 7) with succinate (+rotenone) and 0.48 +/- 0.13 mM (n = 6) with 2-oxoglutarate (2-OG) as substrates. Similar K0.5 values were found for NAD(P)H formation, generation of membrane potential, and state 4 respiration with 2-OG. In the presence of ADP, an increase in Pi concentration promoted a decrease in the K0.5 values of ATP synthesis, membrane potential formation and state 4 respiration for Mg2+ with 2-OG, but not with succinate. These results indicate that 2-OGDH is the main step of oxidative phosphorylation modulated by Mg2+ when 2-OG is the oxidizable substrate; with succinate, the ATP synthase is the Mg2+-sensitive step. Replacement of Pi by acetate, which promotes changes on intramitochondrial pH abolished Mg2+ activation of 2-OGDH. Thus, the modulation of the 2-OGDH activity by Mg2+ has an essential requirement for Pi (and ADP) in intact mitochondria which is not associated to variations in matrix pH.
Collapse
Affiliation(s)
- J S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, D.F. 14080, México
| | | |
Collapse
|
9
|
Madesh M, Balasubramanian KA. Activation of intestinal mitochondrial phospholipase D by polyamines and monoamines. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:324-30. [PMID: 9366248 DOI: 10.1016/s0005-2760(97)00074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intestinal mitochondria have a phospholipase D (PLD) activity which was stimulated by polyamines and monoamines resulting in the formation of phosphatidic acid (PA) from endogenous phospholipids. When stimulated by polyamines, mitochondrial PLD utilized endogenous phosphatidylethanolamine (PE) as substrate whereas stimulated by monoamines, both PE and phosphatidylcholine (PC) were hydrolysed. Stimulation of PA formation by spermine was enhanced by the presence of calcium. Since polyamines are known to alter the calcium transport by mitochondria and PA is known to possess an ionophore effect, stimulation of PA formation in mitochondria by polyamines suggests that polyamine-induced alteration in calcium homeostasis might involve a PA related mechanism.
Collapse
Affiliation(s)
- M Madesh
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India
| | | |
Collapse
|
10
|
Blachier F, Mignon A, Soubrane O. Polyamines inhibit lipopolysaccharide-induced nitric oxide synthase activity in rat liver cytosol. Nitric Oxide 1997; 1:268-72. [PMID: 9704589 DOI: 10.1006/niox.1997.0127] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver cells can produce nitric oxide from L-arginine through either constitutive NO synthase or inducible NO synthase (NOS) detected after in vivo or in vitro treatment with cytokines and/or lipopolysaccharide (LPS). The effects of NO on liver cells are associated with protein synthesis and mitochondrial electron transfer inhibition. L-Arginine is also the precursor of L-ornithine and polyamines. The latter are considered to be protective in the liver in several experimental models. The aim of the present work was to test the effects of polyamines on LPS-inducible NOS activity in rat liver cytosol using the test of radioactive L-citrulline synthesis from L-[guanido-14C]arginine. The three polyamines inhibited inducible NO synthase activity with the following hierarchy: spermine > spermidine approximately equal to putrescine. The 0.5 mM spermine was found to inhibit 50% of inducible NO synthase activity. The present data suggest an inhibitory interrelationship in the liver between two metabolites derived from the common precursor L-arginine.
Collapse
Affiliation(s)
- F Blachier
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | |
Collapse
|