1
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
2
|
Petkovic V, Miletta MC, Boot AM, Losekoot M, Flück CE, Pandey AV, Eblé A, Wit JM, Mullis PE. Short stature in two siblings heterozygous for a novel bioinactive GH mutant (GH-P59S) suggesting that the mutant also affects secretion of the wild-type GH. Eur J Endocrinol 2013; 168:K35-43. [PMID: 23417163 DOI: 10.1530/eje-12-0847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Short stature caused by biologically inactive GH is clinically characterized by lack of GH action despite normal-high secretion of GH, pathologically low IGF1 concentrations and marked catch-up growth on GH replacement therapy. DESIGN AND METHODS Adopted siblings (girl and a boy) of unknown family history were referred for assessment of short stature (-4.5 and -5.6 SDS) at the age of 10 and 8.1 years respectively. They had delayed bone ages (6.8 and 4.5 years), normal GH peaks at stimulation tests, and severely reduced IGF1 concentrations (-3.5 and -4.0 SDS). Genetic analysis of the GH1 gene showed a heterozygous P59S mutation at position involved in binding to GH receptor (GHR). RESULTS Isoelectric focusing analysis of secreted GH in patient serum revealed the presence of higher GH-P59S peak compared with that of wt-GH. Furthermore, computational simulation of GH-P59S binding to GHR suggested problems in correct binding of the mutant to the GHR. In vitro GHR binding studies revealed reduced binding affinity of GH-P59S for GHR (IC₅₀, 30 ng/ml) when compared with the wt-GH (IC₅₀, 11.8 ng/ml) while a significantly decreased ability of the mutant to activate the Jak2/Stat5 signaling pathway was observed at physiological concentrations of 25-100 ng/ml. CONCLUSIONS The clinical and biochemical data of our patients support the diagnosis of partial bioinactive GH syndrome. The higher amount of GH-P59S secreted in their circulation combined with its impact on the wt-GH function on GHR binding and signaling may alter GHR responsiveness to wt-GH and could ultimately explain severe short stature found in our patients.
Collapse
Affiliation(s)
- Vibor Petkovic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University Children's Hospital Bern, Inselspital, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Petkovic V, Godi M, Pandey AV, Lochmatter D, Buchanan CR, Dattani MT, Eblé A, Flück CE, Mullis PE. Growth hormone (GH) deficiency type II: a novel GH-1 gene mutation (GH-R178H) affecting secretion and action. J Clin Endocrinol Metab 2010; 95:731-9. [PMID: 19952226 DOI: 10.1210/jc.2009-1247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT AND OBJECTIVE Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. DESIGN, SETTING, AND PATIENTS A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. CONCLUSION This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.
Collapse
Affiliation(s)
- Vibor Petkovic
- University Children's Hospital, Pediatric Endocrinology, Inselspital CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Petkovic V, Besson A, Thevis M, Lochmatter D, Eblé A, Flück CE, Mullis PE. Evaluation of the biological activity of a growth hormone (GH) mutant (R77C) and its impact on GH responsiveness and stature. J Clin Endocrinol Metab 2007; 92:2893-901. [PMID: 17519310 DOI: 10.1210/jc.2006-2238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT AND OBJECTIVE A single missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C) yields a mutant GH-R77C peptide, which was described as natural GH antagonist. DESIGN, SETTING, AND PATIENTS Heterozygosity for GH-R77C/wt-GH was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SD score) and partial GH insensitivity was diagnosed. His mother and grandfather were also carrying the same mutation and showed partial GH insensitivity with modest short stature. INTERVENTIONS AND RESULTS Functional characterization of the GH-R77C was performed through studies of GH receptor binding and activation of Janus kinase 2/Stat5 pathway. No differences in the binding affinity and bioactivity between wt-GH and GH-R77C were found. Similarly, cell viability and proliferation after expression of both GH peptides in AtT-20 cells were identical. Quantitative confocal microscopy analysis revealed no significant difference in the extent of subcellular colocalization between wt-GH and GH-R77C with endoplasmic reticulum, Golgi, or secretory vesicles. Furthermore studies demonstrated a reduced capability of GH-R77C to induce GHR/GHBP gene transcription rate when compared with wt-GH. CONCLUSION Reduced GH receptor/GH-binding protein expression might be a possible cause for the partial GH insensitivity with delay in growth and pubertal development found in our patients. In addition, this group of patients deserves further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity.
Collapse
Affiliation(s)
- Vibor Petkovic
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Chakraborty G, Ledeen R. Fatty acid synthesizing enzymes intrinsic to myelin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:46-52. [PMID: 12670701 DOI: 10.1016/s0169-328x(03)00033-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study showing incorporation of acetyl groups from neuronal N-acetylaspartate into myelin lipids suggested the presence of fatty acid synthesizing enzymes in myelin that utilize the acetyl groups liberated by myelin-associated aspartoacylase [J. Neurochem. 78 (2001) 736]. We report here detection of the fatty acid synthase (FAS) complex and acetyl-CoA carboxylase (ACC) in purified myelin. The activity of myelin FAS was approximately half that of cytosolic FAS and, unlike the latter, required detergent for activation. Intrinsic association of FAS with myelin was indicated by failure to remove the activity with NaCl or Na-taurocholate. Myelin-associated ACC was approximately 10% of cytosolic ACC in myelin isolated by gradient centrifugation, and this was reduced by half following osmotic shock; this suggested bimodal distribution of myelin ACC, some being loosely associated within inter-lamellar cytoplasmic spaces and the remainder more firmly associated in a manner that resists NaCl/Na-taurocholate treatments. These results, in combination with earlier findings, provide a possible mechanism for the observed incorporation of neuronal NAA acetyl groups into myelin lipids.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Neurosciences, MSB-H505, New Jersey Medical School, UMDNJ, 185 South Orange Ave., Newark, NJ 07103, USA
| | | |
Collapse
|
6
|
Lee ES, Charlton CG. 1-Methyl-4-phenyl-pyridinium increases S-adenosyl-L-methionine dependent phospholipid methylation. Pharmacol Biochem Behav 2001; 70:105-14. [PMID: 11566147 DOI: 10.1016/s0091-3057(01)00588-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1-Methyl-4-phenyl-pyridinium (MPP(+)) and S-adenosyl-L-methionine (SAM) cause Parkinson's disease (PD)-like changes. SAM and MPP(+) require their charged S-methyl and N-methyl groups, so the PD-like symptoms may be related to their ability to modulate the methylation process. The SAM-dependent methylation of phosphatidylethanolamine (PTE) to produce phosphatidylcholine (PTC), via phosphatidylethanolamine-N-methyltransferase (PEMT), and the hydrolysis of PTC to form lyso-PTC, a cytotoxic agent, are potential loci for the action of MPP(+). In this study, the effects of MPP(+) on the methylation of PTE to PTC and the production of lyso-PTC were determined. The results showed that SAM increased PTC and lyso-PTC. The rat striatum showed the highest PEMT activity and lyso-PTC formation, which substantiate with the fact that the striatum is the major structure that is affected in PD. MPP(+) significantly enhanced PEMT activity and the formation of lyso-PTC in the rat liver and brain. MPP(+) increased the affinity and the V(max) of PEMT for SAM. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) effect was lesser and inhibited by deprenyl (MAO-B inhibitor). The nor-methyl analogs of MPP(+) were inactive, but some of the charged analogs of MPP(+) showed comparable effects to those of MPP(+). Lyso-PTC that can be increased by SAM and MPP(+) caused severe impairments of locomotor activities in rats. These results indicate that SAM and MPP(+) have complementary effects on phospholipid methylation. Thus, SAM-induced hypermethylation could be involved in the etiology of PD and an increase of phospholipid methylation could be one of the mechanisms by which MPP(+) causes parkinsonism.
Collapse
Affiliation(s)
- E S Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | |
Collapse
|
7
|
Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 2000; 106:1-29. [PMID: 10878232 DOI: 10.1016/s0009-3084(00)00128-6] [Citation(s) in RCA: 322] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural membranes contain several classes of glycerophospholipids which turnover at different rates with respect to their structure and localization in different cells and membranes. The glycerophospholipid composition of neural membranes greatly alters their functional efficacy. The length of glycerophospholipid acyl chain and the degree of saturation are important determinants of many membrane characteristics including the formation of lateral domains that are rich in polyunsaturated fatty acids. Receptor-mediated degradation of glycerophospholipids by phospholipases A(l), A(2), C, and D results in generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor and diacylglycerol. Thus, neural membrane phospholipids are a reservoir for second messengers. They are also involved in apoptosis, modulation of activities of transporters, and membrane-bound enzymes. Marked alterations in neural membrane glycerophospholipid composition have been reported to occur in neurological disorders. These alterations result in changes in membrane fluidity and permeability. These processes along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for the neurodegeneration observed in neurological disorders.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, 43210, Columbus, OH, USA
| | | | | |
Collapse
|
8
|
Bianchi R, Calzi F, Savaresi S, Sciarretta-Birolo R, Bellasio R, Tsankova V, Tacconi MT. Biochemical analysis of myelin lipids and proteins in a model of methyl donor pathway deficit: effect of S-adenosylmethionine. Exp Neurol 1999; 159:258-66. [PMID: 10486194 DOI: 10.1006/exnr.1999.7132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-Adenosylmethionine (SAMe) is the methyl donor to numerous acceptor molecules. We used cycloleucine (CL), which prevents the conversion of methionine to SAMe by inhibiting ATP-l-methionine-adenosyltransferase (MAT), to characterize the lipid and protein changes induced in peripheral nerve and brain myelin in rats during development. We also investigated the effect of exogenous SAMe by administering SAMe-1,4-butane disulfonate (SAMe-SD4). CL was given on days 7, 8, 12, and 13 and SAMe-SD4 was given daily from day 7; the animals were killed on day 18. CL accumulates in the brain reaching a concentration within 24 h compatible with its ID(50) in vitro and interacting with methionine metabolism; brain MAT activity and SAMe levels were lower and methionine levels higher than in controls. CL significantly reduced brain and nerve weight gains, brain myelin content, proteins, phospholipids, and galactolipids. Among phospholipids in nerve and brain, only sphingomyelin was significantly increased, by 35-50%. Sciatic nerve protein analyses showed some significant changes: protein zero in sciatic nerve remained unchanged but the 14.0- and 18.5-kDa isoforms of myelin basic protein showed a dramatic increase. Among the main proteins, in purified brain myelin, the proteolipid protein and dimer-20 isoform decreased after CL. SAMe-SD4 highlights some sensitive parameters by counteracting, at least partially, some alterations of PL--particularly galactolipids and sphingomyelins--and proteins induced by CL. The partial beneficial effects might also be explained by the age-related limited bioavailability of exogenous SAMe, a finding, to our knowledge, not yet reported elsewhere. This study demonstrates that availability of methyl donors is closely related to the formation of myelin components.
Collapse
Affiliation(s)
- R Bianchi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20157, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, Kaji H, Okimura Y, Abe H, Tanaka T, Chihara K. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest 1997; 100:1159-65. [PMID: 9276733 PMCID: PMC508291 DOI: 10.1172/jci119627] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Short stature caused by biologically inactive growth hormone (GH) is characterized by lack of GH action despite high immunoassayable GH levels in serum and marked catch-up growth to exogenous GH administration. We found a heterozygous single-base substitution (A-->G) in exon 4 of the GH-1 gene of a girl with short stature, clinically suspected to indicate the presence of bioinactive GH and resulting in the substitution of glycine for aspartic acid at codon 112. We confirmed the presence of mutant GH in the serum using isoelectric focusing analysis. The locus of mutation D112G was found within site 2 of the GH molecule in binding with GH receptor (GHR)/GH binding protein (GHBP). The expressed recombinant mutant GH tended to form a 1:1 instead of the 1:2 GH-GHBP complex normally produced by wild-type GH. The formation of a 1:2 GH-GHBP complex is compatible with the dimerization of GHRs by GH, a crucial step in GH signal transduction. Mutant GH was less potent than wild-type GH not only in phosphorylation of tyrosine residues in GHR, janus kinase 2 (JAK2), and signal transducers and activators of transcription 5 (STAT5) in IM-9 cells, but also in metabolic responses of BaF/GM cells, a stable clone transfected with cDNA of the chimera of the extracellular domain of human GHR, the transmembrane and the cytoplasmic domain of the human thrombopoietin receptor. These results indicate that the D112G mutation in the GH-1 gene causes production of bioinactive GH, which prevents dimerization of GHR and is therefore responsible for the patient's short stature.
Collapse
Affiliation(s)
- Y Takahashi
- Third Division, Department of Medicine, Kobe University School of Medicine, Kobe, 650, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Takahashi Y, Kaji H, Okimura Y, Goji K, Abe H, Chihara K. Brief report: short stature caused by a mutant growth hormone. N Engl J Med 1996; 334:432-6. [PMID: 8552145 DOI: 10.1056/nejm199602153340704] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Y Takahashi
- Department of Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|