1
|
Lipophorin Drives Lipid Incorporation and Metabolism in Insect Trypanosomatids. Protist 2015; 166:297-309. [DOI: 10.1016/j.protis.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023]
|
2
|
Medina JM, Rodrigues JCF, Moreira OC, Atella G, Souza WD, Barrabin H. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine. Mem Inst Oswaldo Cruz 2015; 110:48-55. [PMID: 25742263 PMCID: PMC4371217 DOI: 10.1590/0074-02760140097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022] Open
Abstract
Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the
tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial
value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the
growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces
permeabilisation of the cell membrane and a loss of cell content, including the
cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause
permeabilisation of membranes, but instead provokes morphological changes, including
vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of
labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of
C24-alkylated sterols and an increase in zymosterol content. These
results are consistent with the inhibition of 24-sterol methyltransferase (SMT),
which is an important enzyme that is responsible for the methylation of sterols at
the 24 position. We propose that the main target of tomatidine is the sterols
biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results
obtained in the present paper suggest a more general effect of alkaloids in
trypanosomatids, which opens potential therapeutic possibilities for the treatment of
the diseases caused by these pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
3
|
Abstract
Over 100 years after trypanosomatids were first discovered in plant tissues, Phytomonas parasites have now been isolated across the globe from members of 24 different plant families. Most identified species have not been associated with any plant pathology and to date only two species are definitively known to cause plant disease. These diseases (wilt of palm and coffee phloem necrosis) are problematic in areas of South America where they threaten the economies of developing countries. In contrast to their mammalian infective relatives, our knowledge of the biology of Phytomonas parasites and how they interact with their plant hosts is limited. This review draws together a century of research into plant trypanosomatids, from the first isolations and experimental infections to the recent publication of the first Phytomonas genomes. The availability of genomic data for these plant parasites opens a new avenue for comparative investigations into trypanosomatid biology and provides fresh insight into how this important group of parasites have adapted to survive in a spectrum of hosts from crocodiles to coconuts.
Collapse
Affiliation(s)
- Eleanor Jaskowska
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire Butler
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Gazos-Lopes F, Mesquita RD, Silva-Cardoso L, Senna R, Silveira AB, Jablonka W, Cudischevitch CO, Carneiro AB, Machado EA, Lima LG, Monteiro RQ, Nussenzveig RH, Folly E, Romeiro A, Vanbeselaere J, Mendonça-Previato L, Previato JO, Valenzuela JG, Ribeiro JMC, Atella GC, Silva-Neto MAC. Glycoinositolphospholipids from Trypanosomatids subvert nitric oxide production in Rhodnius prolixus salivary glands. PLoS One 2012; 7:e47285. [PMID: 23077586 PMCID: PMC3471836 DOI: 10.1371/journal.pone.0047285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.
Collapse
Affiliation(s)
- Felipe Gazos-Lopes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Lívia Silva-Cardoso
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Raquel Senna
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alan Barbosa Silveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Willy Jablonka
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cecília Oliveira Cudischevitch
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alan Brito Carneiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Ednildo Alcantara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luize G. Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Queiroz Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Evelize Folly
- Universidade Federal Fluminense, Instituto de Biologia. Campus Valonguinho, Prédio do Instituto de Biologia, Departamento de Biologia Celular e Molecular, Centro, Niterói, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alexandre Romeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorick Vanbeselaere
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve d’Ascq, France
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José Marcos Chaves Ribeiro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Georgia Correa Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Mário Alberto Cardoso Silva-Neto
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
5
|
Characterization of Ca2+uptake in a subcellular membrane fraction ofHerpetomonassp. promastigotes. Parasitology 2009; 136:657-63. [DOI: 10.1017/s0031182009005903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SUMMARYATP-dependent Ca2+uptake was studied in a subcellular fraction fromHerpetomonassp. prepared by mechanical disruption and using45Ca2+as a tracer. The uptake was stimulated by Ca2+with a K0·5of 0·1 μmand a Hill number (nH)=2·8±0·4. The Ca2+-dependent ATP hydrolysis was optimal at pH 7·0 and had a Ca2+dependence identical to uptake. The uptake was highly stimulated by oxalate whereas calmodulin had no activating effect. ATP stimulated Ca2+uptake with a biphasic pattern that resembled the curves described for the purified preparations of rabbit sarcoplasmic reticulum. The ATP stimulation is described as the sum of two Michaelis-Menten curves with Km1=0·25±0·19 μmand Km2=29·6±6·8 μm. GTP or UTP could also promote Ca2+uptake, but with less efficiency than ATP. Vanadate inhibited the uptake with low apparent affinity. Thapsigargin and cyclopiazonic acid were almost ineffective. The Ca2+uptake was insensitive to H+ionophores and to bafilomycin suggesting no participation of acidocalcisomes. The results are comparable to those obtained using cells permeabilized with digitonin and using arsenaze III as Ca2+indicator. The Ca2+uptake activity described here seems to belong to the endoplasmic reticulum ofHerpetomonassp. and is suitable for further studies on the mechanisms of calcium homeostasis in parasites.
Collapse
|
6
|
Abstract
Trypanosomatid protozoa include heteroxenic species some of them pathogenic for men, animals and plants. Parasite membrane contains ecto-enzymes whose active sites face the external medium rather than the cytoplasm. Herpetomonas sp. displayed a Mg2+-dependent ecto-ATPase activity, a Mg-independent ecto-ADPase and an ecto-phosphatase activity. Both, the ecto-ADPase and phosphatase activities were insensitive to CrATP (chromium(III) adenosine 5'-triphosphate complex). Ecto-ATPase activity was reversibly inhibited. At 2 mm ATP the apparent Ki was 4 x 7+/-1 x 0 microm but a fraction of about 40-50% was insensitive to CrATP. Remarkably, at low substrate concentration (0 x 2 mm) more than 90% of the ecto-ATPase was inhibited with Ki=0 x 33+/-0 x 10 microm. These parameter dependences are interpreted as the presence of 2 ecto-ATPases activities, one of them with high ATP apparent affinity and sensitivity to CrATP. DIDS (4,4 diisothiocyanatostilbene 2,2' disulfonic acid), suramin and ADP were also effective as inhibitors. Only ADP presented no additive inhibition with CrATP. The pattern of partial inhibition by CrATP was also observed for the ecto-ATPase activities of Leishmania amazonensis, Trypanosoma cruzi and Trypanosoma rangeli. CrATP emerges as a new inhibitor of ecto-ATPases and as a tool for a better understanding of properties and role of ecto-ATPases in the biology of parasites.
Collapse
|
7
|
Pappas GJ, Benabdellah K, Zingales B, González A. Expressed sequence tags from the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 2005; 142:149-57. [PMID: 15869816 DOI: 10.1016/j.molbiopara.2005.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/24/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
We have generated 2190 expressed sequence tags (ESTs) from a cDNA library of the plant trypanosomatid Phytomonas serpens. Upon processing and clustering the set of 1893 accepted sequences was reduced to 697 clusters consisting of 452 singletons and 245 contigs. Functional categories were assigned based on BLAST searches against a database of the eukaryotic orthologous groups of proteins (KOG). Thirty six percent of the generated sequences showed no hits against the KOG database and 39.6% presented similarity to the KOG classes corresponding to translation, ribosomal structure and biogenesis. The most populated cluster contained 45 ESTs homologous to members of the glucose transporter family. This fact can be immediately correlated to the reported Phytomonas dependence on anaerobic glycolytic ATP production due to the lack of cytochrome-mediated respiratory chain. In this context, not only a number of enzymes of the glycolytic pathway were identified but also of the Krebs cycle as well as specific components of the respiratory chain. The data here reported, including a few hundred unique sequences and the description of tandemly repeated motifs and putative transcript stability motifs at untranslated mRNA ends, represent an initial approach to overcome the lack of information on the molecular biology of this organism.
Collapse
Affiliation(s)
- Georgios J Pappas
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
8
|
Soares Medeiros LCA, Moreira BLM, Miranda K, de Souza W, Plattner H, Hentschel J, Barrabin H. A proton pumping pyrophosphatase in acidocalcisomes of Herpetomonas sp. Mol Biochem Parasitol 2005; 140:175-82. [PMID: 15760657 DOI: 10.1016/j.molbiopara.2004.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 11/30/2022]
Abstract
Acidocalcisomes are acidic calcium storage organelles found in several microorganisms. They are characterized by their acidic nature, high electron density, high content of polyphosphates and several cations. Electron microscopy contrast tuned images of Herpetomonas sp. showed the presence of several electron dense organelles ranging from 100 to 300 nm in size. In addition, X-ray element mapping associated with energy-filtering transmission electron microscopy showed that most of the cations, namely Na, Mg, P, K, Fe and Zn, are located in their matrix. Using acridine orange as an indicator dye, a pyrophosphate-driven H+ uptake was measured in cells permeabilized by digitonin. This uptake has an optimal pH of 6.5-6.7 and was inhibited by sodium fluoride (NaF) and imidodiphosphate (IDP), two H+-pyrophosphatase inhibitors. H+ uptake was not promoted by ATP. Addition of 50 microM Ca2+ induced the release of H+, suggesting the presence of a Ca2+/H+ countertransport system in the membranes of the acidic compartments. Na+ was unable to release protons from the organelles. The pyrophosphate-dependent H+ uptake was dependent of ion K+ and inhibited by Na+ Herpetomonas sp. immunolabeled with monoclonal antibodies raised against a Trypanosoma cruzi V-H+-pyrophosphatase shows intense fluorescence in cytoplasmatic organelles of size and distribution similar to the electron-dense vacuoles. Together, these results suggest that the electron dense organelles found in Herpetomonas sp. are homologous to the acidocalcisomes described in other trypanosomatids. They possess a vacuolar H+-pyrophosphatase and a Ca2+/H+ antiport. However, in contrast to the other trypanosomatids so far studied, we were not able to measure any ATP promoted H+ transport in the acidocalcisomes of this parasite.
Collapse
Affiliation(s)
- Lia Carolina A Soares Medeiros
- Departmento de Bioquímica Médica, ICB-CCS Universidade Federal do Rio de Janeiro, UFRJ Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Moysés DN, Barrabin H. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:96-103. [PMID: 15178471 DOI: 10.1016/j.bbabio.2004.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/24/2022]
Abstract
Phytomonas sp. are flagellated trypanosomatid plant parasites that cause diseases of economic importance in plantations of coffee, oil palm, cassava and coconuts. Here we investigated Ca(2+) uptake by the vanadate-insensitive compartments using permeabilized Phytomonas serpens promastigotes. This uptake occurs at a rate of 1.13+/-0.23 nmol Ca(2+) mg x protein(-1) min(-1). It is completely abolished by the H(+) ionophore FCCP and by valinomycin and nigericin. It is also inhibited by 2 microM ruthenium red, which, at this low concentration, is known to inhibit the mitochondrial calcium uniport. Furthermore, salicylhydroxamic acid (SHAM) and propylgallate, specific inhibitors of the alternative oxidase in plant and parasite mitochondria, are also effective as inhibitors of the Ca(2+) transport. These compounds abolish the membrane potential that is monitored with safranine O. Rotenone, an inhibitor of NADH-CoQ oxidoreductase, can also dissipate 100% of the membrane potential. It is suggested that the mitochondria of P. serpens can be energized via oxidation of NADH in a pathway involving the NADH-CoQ oxidoreductase and the alternative oxidase to regenerate the ubiquinone. The electrochemical H(+) gradient can be used to promote Ca(2+) uptake by the mitochondria.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Bioquímica Médica, ICB-CCS, Universidade Federal do Rio de Janeiro-UFRJ, Ilha do Fundão, 21941-590-Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Ralton JE, Mullin KA, McConville MJ. Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana. Biochem J 2002; 363:365-75. [PMID: 11931667 PMCID: PMC1222488 DOI: 10.1042/0264-6021:3630365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.
Collapse
Affiliation(s)
- Julie E Ralton
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
11
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
12
|
Smith TK, Paterson MJ, Crossman A, Brimacombe JS, Ferguson MA. Parasite-specific inhibition of the glycosylphosphatidylinositol biosynthetic pathway by stereoisomeric substrate analogues. Biochemistry 2000; 39:11801-7. [PMID: 10995248 DOI: 10.1021/bi000854w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural substrate for the first alpha-D-mannosyltransferase of glycosylphosphatidylinositol biosynthesis in the protozoan parasite Trypanosoma brucei is D-GlcNalpha1-6-D-myo-inositol-1-P-sn-1, 2-diacylglycerol. Here we show that a diastereoisomer, D-GlcNalpha1-6-L-myo-inositol-1-P-sn-1,2-diacylglycerol, is an inhibitor of this enzyme in a trypanosomal cell-free system. Tests with other L-myo-inositol-containing compounds revealed that L-myo-inositol-1-phosphate is the principal inhibitory component and that methylation of the 2-OH group of the L-myo-inositol residue abolishes any inhibition. Comparisons between the natural substrate and the inhibitors suggested that the inhibitors bind to the first alpha-D-mannosyltransferase by means of charge interactions with the 1-phosphate group and/or hydrogen bonds involving the 3-, 4-, and 5-OH groups of the L-myo-inositol residue, which are predicted to occupy orientations identical to those of the 1-phosphate and 5-, 4-, and 3-OH groups, respectively, of the D-myo-inositol residue of the natural substrate. However, additional experiments indicated that the 4-OH group of the D-myo-inositol residue is unlikely to be involved in substrate recognition. None of the L-myo-inositol-containing compounds that inhibited glycosylphosphatidylinositol (GPI) biosynthesis in a parasite cell-free system had any effect on GPI biosynthesis in a comparable human (HeLa) cell-free system, suggesting that other related parasite-specific inhibitors of this essential pathway might be developed.
Collapse
Affiliation(s)
- T K Smith
- Division of Molecular Parasitology & Biological Chemistry, Departments of Biochemistry and Chemistry, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
13
|
Sodré CL, Moreira BL, Nobrega FB, Gadelha FR, Meyer-Fernandes JR, Dutra PM, Vercesi AE, Lopes AH, Scofano HM, Barrabin H. Characterization of the intracellular Ca(2+) pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes. Arch Biochem Biophys 2000; 380:85-91. [PMID: 10900136 DOI: 10.1006/abbi.2000.1899] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.
Collapse
Affiliation(s)
- C L Sodré
- Departamento de Bioquímica Médica, UFRJ, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Branquinha MH, Vermelho AB, Almeida IC, Mehlert A, Ferguson MA. Structural studies on the polar glycoinositol phospholipids of Trypanosoma (Schizotrypanum) dionisii from bats. Mol Biochem Parasitol 1999; 102:179-89. [PMID: 10477186 DOI: 10.1016/s0166-6851(99)00107-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The polar glycoinositol phospholipids (GIPLs) of a Trypanosoma species that belongs to the Schizotrypanum subgenus were purified by reversed-phase and normal-phase liquid chromatography and analysed by negative-ion mode electrospray-mass spectrometry (ES-MS). The phosphatidylinositol moieties were released by nitrous acid deamination and identified as ceramide- and alkylacylglycerol-containing species. The structures of the GIPLs were determined using chemical treatments, sequential exoglycosidase digestions and positive-ion mode ES-MS-MS. All of the GIPLs were based on the same Man alpha1-2Man alpha1-2Man alpha1-6Man alpha1-4(NH2-CH2CH2-HPO3-)GlcN-PI core with single terminal Galf residue substitutions either on the terminal nonreducing Man or on the second alphaMan residue from the inositol and with either ethanolamine phosphate or 2-aminoethylphosphonate on the third alphaMan residue from the inositol. The T. (S.) dionisii GIPLs are compared with those of T. (S.) cruzi, a closely related species of the Schizotrypanum subgenus.
Collapse
Affiliation(s)
- M H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
15
|
Camargo EP. Phytomonas and other trypanosomatid parasites of plants and fruit. ADVANCES IN PARASITOLOGY 1999; 42:29-112. [PMID: 10050272 DOI: 10.1016/s0065-308x(08)60148-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypanosomatid parasites are fairly common in the latex, phloem, fruit sap, seed albumen, and even in the nectar, of many plant families. They are transmitted to the plants in the saliva of phytophagous hemipterous bugs (Insecta). Morphologically, plant trypanosomatids have no special characteristic, except perhaps a very twisted cell body. Most occur in plants as promastigotes and a few as choanomastigotes. It is still controversial whether or not they are pathogenic in lactiferous plants or fruit, but it is certain that the phloem parasites are pathogenic in coconut palms and coffee bushes. In these plants, they cause lethal diseases responsible for the destruction of many plantations in Central and South America, but fortunately nowhere else in the world. Probably more than one genus of Trypanosomatidae is represented among the plant parasites. The most important is certainly Phytomonas, but Leptomonas, Crithidia and Herpetomonas may also be present. The distinction between them is difficult and only recently have molecular markers become available to help in their identification. At present, Phytomonas can be identified by DNA hybridization with a specific probe (SL3') complementary to a sequence of the mini-exon or spliced leader gene. The development of a polymerase chain reaction coupled to SL3' hybridization has facilitated the detection of Phytomonas in plants. The phylogeny of Phytomonas is still being worked out. For the moment it can only be said that the genus is very close to Herpetomonas.
Collapse
Affiliation(s)
- E P Camargo
- Departamento de Parasitologia, Universidade de São Paulo, Brazil
| |
Collapse
|
16
|
Zawadzki J, Scholz C, Currie G, Coombs GH, McConville MJ. The glycoinositolphospholipids from Leishmania panamensis contain unusual glycan and lipid moieties. J Mol Biol 1998; 282:287-99. [PMID: 9735288 DOI: 10.1006/jmbi.1998.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell surface of Leishmania parasites is coated by glycosylphosphatidylinositol (GPI)-anchored macromolecules (glycoproteins and a lipophosphoglycan) and a polymorphic family of free GPI glycolipids or glycoinositolphospholipids (GIPLs). Here we show that GIPLs with unusual glycan and lipid moieties are likely to be major cell surface components of L. panamensis (subgenus Viannia) promastigotes. These glycolipids were purified by high performance thin layer chromatography and their structures determined by gas-liquid chromatography-mass spectrometry, fast-atom bombardment mass spectrometry, methylation analysis and chemical and enzymatic sequencing of the glycan headgroups. The major GIPLs contained two glycan core sequences, Manalpha1-3Manalpha1-4GlcN-phosphatidylinositol (type-2 series) or Manalpha1-3[Manalpha1-2Manalpha1-6]Manalpha1- 4GlcN-phosphatidylinosit ol (hybrid series), which were elaborated with Galalpha1-2Galbeta1- or Galalpha1-2/3Galalpha1-2Galbeta1- extensions that were attached to the 3-position of the alpha1-3 linked mannose. The phosphatidylinositol moiety contained exclusively diacylglycerol with palmitoyl, stearoyl and heptadecanoyl chains. Non-galactosylated GIPL species with the same core structures were also found. The galactose extensions and the presence of diacylglycerol in the lipid moieties are novel features for the GIPLs of Leishmania spp. The implications of these structures for the biosynthesis of leishmanial GIPLs and their putative function in the mammalian host are discussed.
Collapse
Affiliation(s)
- J Zawadzki
- Departments of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
17
|
Ralton JE, McConville MJ. Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem 1998; 273:4245-57. [PMID: 9461623 DOI: 10.1074/jbc.273.7.4245] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) glycolipids are major cell surface constituents in the Leishmania parasites. Distinct classes of GPI are present as membrane anchors for several surface glycoproteins and an abundant lipophosphoglycan as well as being the major glycolipids (GIPLs) in the plasma membrane. In this study we have identified putative precursors for the protein and lipophosphoglycan anchors and delineated the complete pathway for GIPL biosynthesis in Leishmania mexicana promastigotes. Based on the structural analyses of these GPI intermediates and their kinetics of labeling in vivo and in cell-free systems, we provide evidence that the GIPLs are the products of an independent biosynthetic pathway rather than being excess precursors of the anchor pathways. First, we show that the similar glycan head groups of the GIPL and protein/lipophosphoglycan anchor precursors are assembled on two distinct pools of PI corresponding to 1-O-(C18:0)alkyl-2-stearoyl-PI and 1-O-(C24:0/C26:0)-2-stearoyl-PI, respectively. These PI species account for 20 and 1% of the total PI pool, respectively, indicating a remarkable specificity in their selection. Second, analysis of the flux of intermediates through these pathways in vivo and in a cell-free system suggests that the GIPL and anchor pathways are independently regulated. We also show that GIPL biosynthesis requires fatty acid remodeling, in which the sn-2 stearoyl chains are replaced with myristoyl or lauroyl chains. Fatty acid remodeling is dependent on CoA and ATP and occurs on pre-existing but not on de novo synthesized GIPLs. We suggest that the compartmentalization of different GPI pathways may be important in regulating the species and stage-specific expression of different GPI structures in these parasites.
Collapse
Affiliation(s)
- J E Ralton
- Department of Biochemistry, University of Melbourne, Parkville 3052, Victoria, Australia
| | | |
Collapse
|
18
|
Smith TK, Sharma DK, Crossman A, Dix A, Brimacombe JS, Ferguson MA. Parasite and mammalian GPI biosynthetic pathways can be distinguished using synthetic substrate analogues. EMBO J 1997; 16:6667-75. [PMID: 9362481 PMCID: PMC1170271 DOI: 10.1093/emboj/16.22.6667] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) structures are attached to many cell surface glycoproteins in lower and higher eukaryotes. GPI structures are particularly abundant in trypanosomatid parasites where they can be found attached to complex phosphosaccharides, as well as to glycoproteins, and as mature surface glycolipids. The high density of GPI structures at all life-cycle stages of African trypanosomes and Leishmania suggests that the GPI biosynthetic pathway might be a reasonable target for the development of anti-parasite drugs. In this paper we show that synthetic analogues of early GPI intermediates having the 2-hydroxyl group of the D-myo-inositol residue methylated are recognized and mannosylated by the GPI biosynthetic pathways of Trypanosoma brucei and Leishmania major but not by that of human (HeLa) cells. These findings suggest that the discovery and development of specific inhibitors of parasite GPI biosynthesis are attainable goals. Moreover, they demonstrate that inositol acylation is required for mannosylation in the HeLa cell GPI biosynthetic pathway, whereas it is required for ethanolamine phosphate addition in the T.brucei GPI biosynthetic pathway.
Collapse
Affiliation(s)
- T K Smith
- Departments of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | | | | | | | | | | |
Collapse
|
19
|
Ferguson MA. The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 1997; 352:1295-302. [PMID: 9355120 PMCID: PMC1692025 DOI: 10.1098/rstb.1997.0113] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insect-transmitted protozoan parasites of the order Kinetoplastida, suborder Trypanosomatina, include Trypanosoma brucei (aetiological agent of African sleeping sickness), Trypanosoma cruzi (aetiological agent of Chagas' disease in South and Central America) and Leishmania spp. (aetiological agents of a variety of diseases throughout the tropics and sub-tropics). The structures of the most abundant cell-surface molecules of these organisms is reviewed and correlated with the different modes of parasitism of the three groups of parasites. The major surface molecules are all glycosylphosphatidylinositol (GPI)-anchored glycoproteins, such as the variant surface glycoproteins of T. brucei and the surface mucins of T. cruzi, or complex glycophospholipids, such as the lipophosphoglycans and glycoinositolphospholipids of the leishmanias. Significantly, all of the aforementioned structures share a motif of Man alpha 1-4GlcN alpha 1-6-myo-inositol-1-HPO4-lipid and can therefore be considered to be members of a GPI superfamily.
Collapse
Affiliation(s)
- M A Ferguson
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
20
|
Carreira JC, Jones C, Wait R, Previato JO, Mendonça-Previato L. Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj J 1996; 13:955-66. [PMID: 8981087 DOI: 10.1007/bf01053191] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structures of the glycoinositolphospholipids (GIPLs) from five strains of the protozoan parasite Trypanosoma cruzi have been determined. Two series of structures were identified, all but one containing the same Man4(AEP)GlcN-Ins-PO4 core. Series 1 oligosaccharides are substituted at the third mannose distal to inositol (Man 3) by ethanolamine-phosphate or 2-aminoethylphosphonic acid, as are some glycosyl-phosphatidylinositol-protein anchors of T. cruzi. The core can be further substituted by terminal (1-3)-linked beta-galactofuranose units. In contrast, Series 2 oligosaccharides do not have additional phosphorus-containing groups attached to Man 3, the latter being substituted instead by a single side chain unit of beta-galactofuranose. Series 1 oligosaccharides are present in all strains (G, G-645, Tulahuen CL, and Y) whereas Series 2 structures are present mainly in CL and Y strains. The lipid moiety in the GIPLs from the G, G-645 and Tulahuen strains is predominantly ceramide, as reported for the Y strain, whilst that from the CL strain is a mixture of ceramide and alkylacylglycerol species. The lipid moiety of the GIPLs, and probably also the phosphoinositol-oligosaccharide structures may play an important immunomodulatory role in infection by T. cruzi.
Collapse
Affiliation(s)
- J C Carreira
- Instituto de Microbiologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | |
Collapse
|