1
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
2
|
Verspohl EJ, Blackburn GM, Hohmeier N, Hagemann J, Lempka M. Synthetic, nondegradable diadenosine polyphosphates and diinosine polyphosphates: their effects on insulin-secreting cells and cultured vascular smooth muscle cells. J Med Chem 2003; 46:1554-62. [PMID: 12672257 DOI: 10.1021/jm011070z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diadenosine polyphosphates show a dissimilarity between their effects in static and perifusion experiments with respect to insulin release that may be due to degradation of the compounds. The aim was to investigate two nondegradable compounds of bisphosphorothioates containing a methylene or chloromethylene group (namely, diadenosine 5',5' "-(P(1),P(4)-dithio-P(2),P(3)-methylene)tetraphosphate and diadenosine 5',5' "-(P(1),P(4)-dithio-P(2),P(3)-chloromethylene)tetraphosphate), as mixtures of three or four diastereomers. Owing to their modified structures, these compounds are resistant to degradation (ectophosphodiesterases, diphosphohydrolases, and phosphorylases). Both compounds tested were minimally degraded (2%) even after 16 h when incubated with insulin-secreting (INS-1) cells. Additionally, diinosine polyphosphates (Ip(5)I and Ip(6)I), putative antagonists of diadenosine polyphosphates, were tested. By use of [(3)H]Ap(4)A, saturable binding sites for both diadenosine polyphosphate analogues were found in INS-1 cells, 3T3 preadipocyte cells, and vascular smooth muscle cells (VSMC) and for both Ip(5)I and Ip(6)I in INS-1 cells. The synthesized diadenosine polyphosphate analogues have the same affinity as Ap(4)A, whereas Ip(5)I and Ip(6)I inhibit binding at higher concentrations (10-100 microM). Insulin release was investigated in static experiments over 90 min in INS-1 cells. Insulin release was inhibited dose-dependently by both of the diadenosine polyphosphate analogues to the same degree as by Ap(4)A. The glucose-induced insulin release curve was not shifted to the right. Both compounds inhibit insulin release only at high (insulin stimulatory) glucose concentrations, e.g., 5.6 mM glucose. Ip(5)I and Ip(6)I antagonized Ap(5)A-mediated inhibition of insulin release. [(3)H]Thymidine incorporation into VSMC was not influenced by either synthetic diadenosine polyphosphate analogue, indicating that Ap(4)A does not act by itself in this case but (active) degradation products mediate the effect. The data indicate the following. (1) Since nondegradable compounds inhibit insulin release as well as Ap(4)A, it is Ap(4)A itself and not any of its degradation products that induces this effect. (2) Diadenosine polyphosphate effects on cell proliferation are mediated via a degradation product in contrast to their effect on insulin release. (3) Ip(5)I and Ip(6)I act like antagonists. Both synthetic analogues and diinosine polyphosphates are valuable tools for diabetes research.
Collapse
Affiliation(s)
- Eugen J Verspohl
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Hittorfstrasse 58-62, Germany.
| | | | | | | | | |
Collapse
|
3
|
Minelli A, Allegrucci C, Liguori L, Ronquist G. Ecto-diadenosine polyphosphates hydrolase activity on human prostasomes. Prostate 2002; 51:1-9. [PMID: 11920952 DOI: 10.1002/pros.10062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ecto-diadenosine polyphosphates are ubiquitous compounds with several physiological roles. Ecto-diadenosine polyphosphates hydrolase control their actions by degrading and terminating their signaling. The present work deals with the identification and partial characterization of ecto-diadenosine polyphosphates hydrolase on human prostasomes. METHODS Reverse-phase and paired-ion HPLC techniques have been used. RESULTS Prostasomes have an ecto-diadenosine polyphosphates hydrolase that leads to the degradation of several diadenosine compounds. Kinetic parameters of the enzyme show that diadenosine tetraphosphate is the preferred substrate that is further metabolized by the prostasome-ecto-nucleotidases to adenosine. The ecto-enzyme is bound to the prostasome-membranes through a GPI-anchor and is activated by physiological concentration of Ca+2, Mg+2, and Mn+2. Its optimum pH is also in the slightly alkaline physiological range. Human spermatozoa do not possess this hydrolytic activity, but they can acquire it after fusion with prostasomes. CONCLUSIONS The existence of an enzyme capable of degrading diadenosine compounds and can be transferred to human spermatozoa suggests new physiological implications for the role of prostasomes in fertilization.
Collapse
Affiliation(s)
- Alba Minelli
- Dipartimento di Scienze Biochimiche e Biotecnologie Molecolari, Sezione di Biochimica Cellulare, Università di Perugia, Via del Giochetto, Perugia, Italy.
| | | | | | | |
Collapse
|
4
|
Aguilar JS, Reyes R, Asensio AC, Oaknin S, Rotllán P, Miledi R. Ectoenzymatic breakdown of diadenosine polyphosphates by Xenopus laevis oocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1289-97. [PMID: 11231280 DOI: 10.1046/j.1432-1327.2001.01987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenopus laevis oocytes exhibit ectoenzymatic activity able to hydrolytically cleave extracellular diadenosine polyphosphates (Ap(n)A). The basic properties of this ectoenzyme were investigated using as substrates di-(1,N(6)-ethenoadenosine) 5',5"'-P(1),P(4)-tetraphospate [epsilon-(Ap(4)A)] and di-(1,N(6)-ethenoadenosine) 5',5"'-P(1),P(5)-pentaphospate [epsilon-(Ap(5)A)], fluorogenic derivatives of Ap(4)A and Ap(5)A, respectively. epsilon-(Ap(4)A) and epsilon-(Ap(5)A) are hydrolysed by folliculated oocytes according to hyperbolic kinetics with K(m) values of 13.4 and 12.0 microM and Vmax values of 4.8 and 5.5 pmol per oocyte per min, respectively. The ectoenzyme is activated by Ca(2+) and Mg(2+), reaches maximal activity at pH 8--9 and is inhibited by suramin. Defolliculated oocytes also hydrolyse both substrates with similar K(m) values but V(max) values are approximately doubled with respect to folliculated controls. Chromatographic analysis indicates that extracellular epsilon-(Ap(4)A) and epsilon-(Ap(5)A) are first cleaved into 1,N(6)-ethenoAMP (epsilon-AMP) + 1,N(6)-ethenoATP (epsilon-ATP) and epsilon-AMP + 1,N(6)-ethenoadenosine tetraphosphate (epsilon-Ap(4)), respectively, which are catabolized to 1,N(6)-ethenoadenosine (epsilon-Ado) as the end product by folliculated oocytes. Denuded oocytes, however, show a drastically reduced rate of epsilon-Ado production, epsilon-AMP being the main end-product of extracellular epsilon-(Ap(n)A) catabolism. Results indicate that, whereas the Ap(n)A-cleaving ectoenzyme appears to be located mainly in the oocyte, ectoenzymes involved in the dephosphorylation of mononucleotide moieties are located mainly in the follicular cell layer.
Collapse
Affiliation(s)
- J S Aguilar
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | | | | | | | | | | |
Collapse
|
5
|
Laubinger W, Welte T, Streubel G, Schäfer HJ, Reiser G. In human and rat lung membranes [35S]GTPgammaS binding is a tool for pharmacological characterization of G protein-coupled dinucleotide receptors. Life Sci 1999; 65:PL183-90. [PMID: 10530805 DOI: 10.1016/s0024-3205(99)00394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The P2Y receptor family is activated by extracellular nucleotides such as ATP and UTP. P2Y receptors regulate physiological functions in numerous cell types. In lung, the P2Y2 receptor subtype plays a role in controlling Cl- and fluid transport. Besides ATP or UTP, also diadenosine tetraphosphate (Ap4A), a stable nucleotide, seems to be of physiological importance. In membrane preparations from human and rat lung we applied several diadenosine polyphosphates to investigate whether they act as agonists for G protein-coupled receptors. We assessed this by determining the stimulation of [35S]GTPgammaS binding. Stimulation of [35S]GTPgammaS binding to G proteins has already been successfully applied to elucidate agonist binding to various G protein-coupled receptors. Ap(n)A (n = 2 to 6) enhanced [35S]GTPgammaS binding similarly in human and rat lung membranes, an indication of the existence of G protein-coupled receptor binding sites specific for diadenosine polyphosphates. Moreover, in both human and rat lung membranes comparable pharmacological properties were found for a diadenosine polyphosphate ([3H]Ap4A) binding site. The affinity for Ap2A, Ap3A, Ap4A, Ap5A, and Ap6A was also comparable. 8-Diazido-Ap4A and ATP were less potent, whereas the pyrimidine nucleotide UTP showed hardly any affinity. Thus, we present evidence that different diadenosine polyphosphates bind to a common G protein-coupled receptor binding site in membranes derived either from human or rat lung.
Collapse
Affiliation(s)
- W Laubinger
- Institut für Neurobiochemie, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Verspohl EJ, Johannwille B, Kaiserling-Buddemeier I, Schlüter H, Hagemann J. Diadenosine polyphosphates in cultured vascular smooth-muscle cells and endothelium cells--their interaction with specific receptors and their degradation. J Pharm Pharmacol 1999; 51:1175-81. [PMID: 10579689 DOI: 10.1211/0022357991776714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The role of diadenosine polyphosphates (ApnA, where "A" denotes "adenosine" and "n" denotes the number of phosphate groups "p") as vasoconstrictors of smooth-muscle cells and as blood-pressure regulating and insulin-releasing compounds has been described. It was the aim of this study to investigate whether specific receptors for these compounds, mediating the above mentioned effects, occur in cultured vascular smooth-muscle cells (VSMC) and in endothelium cells, and whether these compounds are degraded during incubation. Saturable binding sites for diadenosine polyphosphate [3H]Ap4A with an extremely quick saturation equilibrium, even at low temperature (4 degrees C), are present in vascular smooth-muscle cells. Diadenosine polyphosphates at micromolar concentrations displaced [3H]Ap4A from binding sites; the ranking order was Ap4A > Ap3A > Ap5A approximately Ap6A. Compounds interacting with purinergic P2X receptors such as suramin, alpha,beta-methylene ATP and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), albeit at high concentrations, displaced [3H]Ap4A from its binding sites. Surprisingly, at low concentrations the compounds tested increased the binding of [3H]Ap4A, which might imply the occurrence of positive receptor cooperativity or inhibition of [3H]Ap4A degradation. By use of thin-layer chromatography it was observed that [3H]Ap4A was quickly degraded (half-life approx. 12 min) in the extracellular medium to (mainly) adenosine and inosine. [3H]Ap4A and its degradation products were quickly taken up by the cells. Degradation can be inhibited by Ap6A, alpha,beta-methylene ATP or PPADS. Rather similar degradation and uptake results were also obtained when endothelium cells were used. These data indicate that specific binding sites for [3H]Ap4A are present in vascular smooth-muscle cells and that diadenosine polyphosphates at physiological concentrations displace binding. The receptors involved might be distinct diadenosine polyphosphate receptors, although the involvement of others, such as P2X receptors, is also possible. Ap4A is quickly degraded in the extracellular space and compounds that inhibit degradation result in an increase in [3H]Ap4A binding. It should be remembered that when diadenosine polyphos-phates are being investigated in physiological and pathophysiological studies of their impact on smooth-muscle cell proliferation and on vasoconstriction (blood-pressure regulation), results obtained from long-term incubations might be critical.
Collapse
MESH Headings
- Animals
- Biological Transport
- Cells, Cultured
- Dinucleoside Phosphates/metabolism
- Dinucleoside Phosphates/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Female
- Kinetics
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic/metabolism
- Receptors, Purinergic P2/metabolism
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Pharmaceutical Chemistry, University of Münster, Germany
| | | | | | | | | |
Collapse
|
7
|
Silvestre RA, Rodríguez-Gallardo J, Egido EM, Marco J. Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas. Br J Pharmacol 1999; 128:795-801. [PMID: 10516664 PMCID: PMC1571678 DOI: 10.1038/sj.bjp.0702837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Diadenosine triphosphate (AP3A) and diadenosine tetraphosphate (AP4A) are released by various cells (e.g. platelets and chromaffin cells), and may act as extracellular messengers. In pancreatic B-cells, AP3A and AP4A are inhibitors of the ATP-regulated K+ channels, and glucose increases intracellular levels of both substances. 2. We have studied the effect of exogenous AP3A and AP4A on insulin and glucagon secretion by the perfused rat pancreas. 3. AP3A did not significantly modify insulin or glucagon release, whereas AP4A induced a prompt, short-lived insulin response ( approximately 4 fold higher than basal value; P<0.05) in pancreases perfused at different glucose concentrations (3.2, 5.5 or 9 mM). AP4A-induced insulin release was abolished by somatostatin and by diazoxide. These two substances share the capacity to activate ATP-dependent K+ channels, suggesting that these channels are a potential target for AP4A in the B-cell. 4. AP4A stimulated glucagon release at both 3.2 and 5.5 mM glucose. This effect was abolished by somatostatin. 5. The results suggest that extracellular AP4A may play a physiological role in the control of insulin and glucagon secretion.
Collapse
Affiliation(s)
- Ramona A Silvestre
- Clínica Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Physiology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Eva M Egido
- Clínica Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Marco
- Clínica Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Physiology, Universidad Autónoma de Madrid, Madrid, Spain
- Author for correspondence:
| |
Collapse
|
8
|
Edgecombe M, McLennan AG, Fisher MJ. Diadenosine polyphosphates and the control of cyclic AMP concentrations in isolated rat liver cells. FEBS Lett 1999; 457:455-8. [PMID: 10471828 DOI: 10.1016/s0014-5793(99)01099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular diadenosine polyphosphates (Ap(n)A), through their interactions with appropriate P(2) receptors, influence a diverse range of intracellular activities. In particular, Ap(4)A stimulates alterations in intracellular calcium homeostasis and subsequent activation of glycogen breakdown in isolated liver cells. Here we show that, like ATP, Ap(4)A and other naturally occurring diadenosine polyphosphates attenuate glucagon-stimulated accumulation of cyclic AMP in isolated rat liver cells. The characteristics of Ap(4)A- and ATP-dependent modulation of glucagon-stimulated cyclic AMP accumulation are similar. These results are discussed in the context of the repertoire of intracellular signalling processes modulated by extracellular nucleotides.
Collapse
Affiliation(s)
- M Edgecombe
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
9
|
Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1432:159-84. [PMID: 10407139 DOI: 10.1016/s0167-4838(99)00119-3] [Citation(s) in RCA: 606] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein examined for its pivotal role in energy production. It was also used as a model protein for analysis of protein structure and enzyme mechanisms. The GAPDH gene was utilized as a prototype for studies of genetic organization, expression and regulation. However, recent evidence demonstrates that mammalian GAPDH displays a number of diverse activities unrelated to its glycolytic function. These include its role in membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. These new activities may be related to the subcellular localization and oligomeric structure of GAPDH in vivo. Furthermore, other investigations suggest that GAPDH is involved in apoptosis, age-related neurodegenerative disease, prostate cancer and viral pathogenesis. Intriguingly, GAPDH is also a unique target of nitric oxide. This review discusses the functional diversity of GAPDH in relation to its protein structure. The mechanisms through which mammalian cells may utilize GAPDH amino acid sequences to provide these new functions and to determine its intracellular localization are considered. The interrelationship between new GAPDH activities and its role in cell pathologies is addressed.
Collapse
Affiliation(s)
- M A Sirover
- Department of Pharmacology, Temple University School of Medicine, Philadelphia PA 19140, USA.
| |
Collapse
|
10
|
Campbell SA, Kemerling AJ, Hilderman RH. Characterization of P1,P4-diadenosine 5'-tetraphosphate binding on bovine aortic endothelial cells. Arch Biochem Biophys 1999; 364:280-5. [PMID: 10190985 DOI: 10.1006/abbi.1999.1128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years it has become increasingly clear that alpha, omega-dinucleotides act as extracellular modulators of various biological processes. P1,P4-diadenosine 5'-tetraphosphate (Ap4A) is the best characterized alpha,omega-dinucleotides and acts as an extracellular signal molecule by inducing the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (R. H. Hilderman, and E. F. Christensen (1998) FEBS Lett. 407, 320-324). However, the characteristics of Ap4A binding to endothelial cells have not been determined. In this report we demonstrate that Ap4A binds to a heterogeneous population of receptors on BAEC. Competition ligand-binding studies using various adenosine dinucleotides, guanosine dinucleotides, adenosine/guanosine dinucleotides, and synthetic P2 purinoceptor agonists and antagonists demonstrate that Ap4A binds to a receptor on BAEC that has a high affinity for some of the adenosine dinucleotides. The apparent IC50 values for Ap4A, Ap2A, and Ap3A are between 12 and 15 microM, while the apparent IC50 values for Ap5A and Ap6A are greater than 500 microM. Evidence is also presented which suggests that this receptor can be classified as a putative P4 purinoceptor. Competition studies also demonstrate that Ap4A binds at a lower affinity to a second class of binding sites.
Collapse
Affiliation(s)
- S A Campbell
- Biological Sciences, Clemson University, Clemson, South Carolina, 29634-1903, USA
| | | | | |
Collapse
|
11
|
Fontes R, Günther Sillero MA, Sillero A. Acyl-CoA synthetase catalyzes the synthesis of diadenosine hexaphosphate (Ap6A). Biochimie 1999; 81:229-33. [PMID: 10385004 DOI: 10.1016/s0300-9084(99)80056-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of diadenosine hexaphosphate (Ap6A), a potent vasoconstrictor, is catalyzed by acyl-CoA synthetase from Pseudomonas fragi. In a first step AMP is transferred from ATP to tetrapolyphosphate (P4) originating adenosine pentaphosphate (p5A) which, subsequently, is the acceptor of another AMP moiety from ATP generating diadenosine hexaphosphate (Ap6A). Diadenosine pentaphosphate (Ap5A) and diadenosine tetraphosphate (Ap4A) were also synthesized in the course of the reaction. In view of the variety of biological effects described for these compounds the potential capacity of synthesis of diadenosine polyphosphates by the mammalian acyl-CoA synthetases may be relevant.
Collapse
Affiliation(s)
- R Fontes
- Serviço de Química Fisiológica, Faculdade de Medicina, Universidade do Porto, Portugal
| | | | | |
Collapse
|
12
|
Hilderman RH, Fairbank AT. Binding and internalization of p1,p4-diadenosine 5'-tetraphosphate by bovine aortic endothelial cells. Biochimie 1999; 81:255-60. [PMID: 10385007 DOI: 10.1016/s0300-9084(99)80059-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
p1,p4-Diadenosine 5'-tetraphosphate (Ap4A) has been implicated as a modulator of blood vessel tone. We have recently demonstrated that the infusion of Ap4A into swine induces vasodilation (Hilderman et al., Am. J. Hypertension 10 (1997) 94A) and that Ap4A induces the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (Hilderman and Christensen, FEBS Lett. 427 (1998) 320-324). However, the interaction of Ap4A with endothelial cells is incompletely understood. Therefore, we determined the characteristics of [3H]-Ap4A binding to BAEC in normal and ATP-depleted cells. These binding studies demonstrate that the interaction of Ap4A with BAEC involves two distinct steps: an ATP independent step and a second ATP dependent step leading to internalization of Ap4A. The initial interaction of Ap4A with BAEC is not affected by either EGTA or iodoacetate; however, both agents block the second step. These data suggest that calcium ions and sulfhydryl groups are required for Ap4A internalization but not for an initial binding event.
Collapse
Affiliation(s)
- R H Hilderman
- Department of Microbiology/Molecular Medicine, Greenville Hospital System and the South Carolina Experiment Station, Clemson University, 29634-1903, USA
| | | |
Collapse
|
13
|
Laubinger W, Reiser G. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat. Eur J Pharmacol 1999; 366:93-100. [PMID: 10064157 DOI: 10.1016/s0014-2999(98)00902-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.
Collapse
Affiliation(s)
- W Laubinger
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Germany
| | | |
Collapse
|
14
|
Blouse GE, Liu G, Hilderman RH. Characterization of ATP and P2 agonists binding to the cardiac plasma membrane P1,P4-diadenosine 5'-tetraphosphate receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1375:61-72. [PMID: 9767112 DOI: 10.1016/s0005-2736(98)00140-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
P1,P4-Diadenosine 5'-tetraphosphate (Ap4A) acts as an extracellular modulator through its interaction with purinoceptors. Our laboratory has demonstrated the presence of an Ap4A receptor in cardiac tissue [1,2]. Due to the rapid hydrolysis of ATP by cardiac membranes the relationship of ATP and Ap4A binding to purinoceptors on cardiac membranes has not been characterized. In this communication we used two approaches to determine the relationship of ATP to the Ap4A receptor. Radioligand binding carried out with [alpha-32P]Ap4A and adenosine 5'-O-¿3-thiotriphosphate¿ ([gamma-35S]ATPgammaS) demonstrates the presence of a single high affinity binding site for Ap4A and the presence of two binding sites for ATPgammaS. The second approach utilized immunoaffinity purified Ap4A receptor that was shown to be free of ATPase and Ap4Aase activities. Non-radiolabeled Ap4A and ATPgammaS effectively inhibited photocrosslinking of [alpha-32P]8-N3Ap4A to the receptor polypeptide while ATP was a much less effective inhibitor. Furthermore, on plasma membranes [alpha-32P]8-N3Ap4A photocrosslinked to only a 50 kDa polypeptide. These data are consistent with Ap4A interacting with a homogeneous population of receptors on cardiac plasma membranes but with ATP having a low affinity for the receptor.
Collapse
Affiliation(s)
- G E Blouse
- Department of Biochemical Research, Henry Ford Health System, Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
15
|
Madrid O, Martín D, Atencia EA, Sillero A, Günther Sillero MA. T4 DNA ligase synthesizes dinucleoside polyphosphates. FEBS Lett 1998; 433:283-6. [PMID: 9744812 DOI: 10.1016/s0014-5793(98)00932-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
T4 DNA ligase (EC 6.5.1.1), one of the most widely used enzymes in genetic engineering, transfers AMP from the E-AMP complex to tripolyphosphate, ADP, ATP, GTP or dATP producing p4A, Ap3A, Ap4A, Ap4G and Ap4dA, respectively. Nicked DNA competes very effectively with GTP for the synthesis of Ap4G and, conversely, tripolyphosphate (or GTP) inhibits the ligation of DNA by the ligase. As T4 DNA ligase has similar requirements for ATP as the mammalian DNA ligase(s), the latter enzyme(s) could also synthesize dinucleoside polyphosphates. The present report may be related to the recent finding that human Fhit (fragile histidine triad) protein, encoded by the FHIT putative tumor suppressor gene, is a typical dinucleoside 5',5''-P1,P3-triphosphate (Ap3A) hydrolase (EC 3.6.1.29).
Collapse
Affiliation(s)
- O Madrid
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas, CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Ross FM, Brodie MJ, Stone TW. The effects of adenine dinucleotides on epileptiform activity in the CA3 region of rat hippocampal slices. Neuroscience 1998; 85:217-28. [PMID: 9607713 DOI: 10.1016/s0306-4522(97)00619-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha, omega-adenine dinucleotides (Ap(n)A) consist of two adenosine molecules linked at the 5' position by phosphate groups, the number of which is denoted by n and can range from 2 to 6. The aim of this study was to investigate the effect of Ap4A and Ap5A on the rate of epileptiform activity. Hippocampal slices (450 microm), when perfused with a medium containing no added magnesium and 4-aminopyridine (50 microM), generate epileptiform activity of an interictal nature. Ap4A and Ap5A at 1 microM depressed the discharge rate to a significant extent. At this concentration adenosine (1 microM) did not produce any effect. However at 10 microM adenosine, Ap4A and Ap5A all decreased the burst frequency. Adenosine deaminase (0.2 U/ml) totally annulled the inhibition of epileptiform activity produced by 10 microM adenosine or 1 microM Ap4A and Ap5A. Adenosine deaminase did not significantly change the maximum depression of activity produced by 10 microM Ap4A and Ap5A. 8-cyclopentyl-1,3-dimethylxanthine, an A1, receptor antagonist, increased the basal rate of epileptiform activity and prevented the depression of burst discharges by Ap4A. 5'-adenylic acid deaminase converts AMP into IMP which is inactive. 5'-adenylic acid deaminase did not prevent the inhibitory effects of Ap4A. The results suggests that in the CA3 region of the hippocampus, Ap4A and Ap5A act partly by stimulating xanthine-sensitive receptors directly and partly through the formation of the metabolite, adenosine.
Collapse
Affiliation(s)
- F M Ross
- Institute of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, University of Glasgow, UK
| | | | | |
Collapse
|
17
|
Edgecombe M, Eckersley SP, McLennan AG, Fisher MJ. Diadenosine polyphosphate-mediated activation of phospholipase D in isolated rat liver cells. Cell Signal 1998; 10:505-9. [PMID: 9754719 DOI: 10.1016/s0898-6568(97)00177-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diadenosine polyphosphates (ApnAs) can, through interaction with appropriate purinoceptors, affect a range of cellular activities. Ap4A, the most prominent naturally occurring diadenosine polyphosphate, stimulates alterations in intracellular calcium homeostasis and subsequent activation of glycogen breakdown in isolated liver cells. Here we show that Ap4A, and other naturally occurring diadenosine polyphosphates, also stimulates phospholipase D (PLD) activity in isolated rat liver cells. The characteristics of Ap4A-mediated activation of PLD are similar to those for the activation of PLD by extracellular ATP. These results are discussed in the context of the relation between diadenosine polyphosphate- and adenine mononucleotide-mediated cellular signalling processes.
Collapse
Affiliation(s)
- M Edgecombe
- Department of Biochemistry, University of Liverpool, UK
| | | | | | | |
Collapse
|
18
|
Kisselev LL, Justesen J, Wolfson AD, Frolova LY. Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett 1998; 427:157-63. [PMID: 9607303 DOI: 10.1016/s0014-5793(98)00420-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diadenosine oligophosphates (Ap(n)A) were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). Now, more than 30 years later, about 300 papers have been published around these substances in attempt to decipher their role in cells. Recently, Ap(n)A have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of Ap(n)A levels (n from 2 to 6) and Ap3A/Ap4A ratio. Cell differentiation and apoptosis have substantial and opposite effects on Ap3A/Ap4A ratio in cultured cells. A human Ap3A hydrolase, Fhit, appeared to be involved in protection of cells against tumourigenesis. Ap3A is synthesised by mammalian u synthetase (TrpRS) which in contrast to most other aaRS is unable to synthesise Ap4A and is an interferon-inducible protein. Moreover, Ap3A appeared to be a preferred substrate for 2-5A synthetase, also interferon-inducible, priming the synthesis of 2' adenylated derivatives of Ap3A, which in turn may serve as substrates of Fhit. Tumour suppressor activity of Fhit is assumed to be associated with involvement of the Fhit.Ap3A complex in cytokine signalling pathway(s) controlling cell proliferation. The Ap(n)A family is potentially a novel class of signal-transducing molecules whose functions are yet to be determined.
Collapse
|
19
|
Edgecombe M, Craddock HS, Smith DC, McLennan AG, Fisher MJ. Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Biochem J 1997; 323 ( Pt 2):451-6. [PMID: 9163337 PMCID: PMC1218340 DOI: 10.1042/bj3230451] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diadenosine polyphosphates released into the extracellular environment influence a variety of metabolic and other cellular activities in a wide range of target tissues. Here we have studied the impact of these novel nucleotides on gluconeogenesis in isolated rat proximal tubules. Gluconeogenesis was stimulated following exposure of isolated proximal tubules to a range of adenine-containing nucleotides including ADP, ATP, Ap3A, Ap4A, Ap5A and Ap6A. The concentration-dependence of ATP-, Ap3A- and Ap4A-mediated stimulation of gluconeogenesis was similar and was consistent with a role for these agents in the physiological control of renal metabolism. Nucleotide-stimulated gluconeogenesis was diminished in the presence of agents that interfere with phospholipase C activation or intracellular Ca2+ metabolism, indicative of a role for polyphosphoinositide-mediated Ca2+ mobilization in the mechanism of action of ATP, Ap3A and Ap4A. The characteristics of binding of [2-3H]Ap4A to renal plasma-membrane preparations suggest that Ap4A mediates its effects on proximal tubule gluconeogenesis via interaction with P2y-like purinoceptor(s) also recognized by extracellular ATP.
Collapse
Affiliation(s)
- M Edgecombe
- Department of Biochemistry, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK
| | | | | | | | | |
Collapse
|