1
|
Abstract
The structure of plasma PAF-AH was solved to a resolution of 1.5Å using X-ray crystallography. The enzyme has a classic α/β serine hydrolase fold containing a catalytic triad of Ser273, Asp296, and His351. A hydrophobic patch of the enzyme involving two α-helices (114-126 and 362-369) and neighboring residues have been shown to be essential for lipoprotein particle binding by mutagenesis and mass spectrometry hydrogen/deuterium exchange experiments. An interface-bound model of the enzyme positions the active site above the hydrophobic-hydrophilic interface and is consistent with the known substrate specificity of the enzyme. Several ligand-bound structures of plasma PAF-AH have been solved with organophosphorus compounds and modeled with competitive inhibitors of high affinity and selectivity. This chapter presents an overview of the structure of plasma PAF-AH, molecular details of its functional role, and the interaction of the enzyme with lipoprotein particles.
Collapse
|
2
|
Basu D, Manjur J, Jin W. Determination of lipoprotein lipase activity using a novel fluorescent lipase assay. J Lipid Res 2011; 52:826-32. [PMID: 21270098 DOI: 10.1194/jlr.d010744] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel, real-time, homogeneous fluorogenic lipoprotein lipase (LPL) assay was developed using a commercially available substrate, the EnzChek lipase substrate, which is solubilized in Zwittergent. The triglyceride analog substrate does not fluoresce, owing to apposition of fluorescent and fluorescent quenching groups at the sn-1 and sn-2 positions, respectively, fluorescence becoming unquenched upon release of the sn-1 BODIPY FA derivative following hydrolysis. Increase in fluorescence intensity at 37°C was proportional to LPL concentration. The assay was more sensitive than a similar assay using 1,2-O-dilauryl-rac-glycero-3-glutaric acid-(6-methylresorufin ester) and was validated in biological samples, including determination of LPL-specific activity in postheparin mouse plasma. The simplicity and reproducibility of the assay make it ideal for in vitro, high-throughput screening for inhibitors and activators of LPL, thus expediting discovery of drugs of potential clinical value.
Collapse
Affiliation(s)
- Debapriya Basu
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
3
|
Pande AH, Tillu VA. Membrane lipid composition differentially modulates the function of human plasma platelet activating factor-acetylhydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:46-56. [DOI: 10.1016/j.bbalip.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/16/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
|
4
|
Chou YC, Tsai YC, Chen CM, Chen SM, Lee JA. Determination of lipoprotein lipase activity in post heparin plasma of streptozotocin-induced diabetic rats by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 2008; 22:502-10. [PMID: 18205134 DOI: 10.1002/bmc.960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of lipoprotein lipase (LPL), an enzyme responsible for lipoprotein metabolism, would vary in diseases and metabolic disorders. For determination of LPL activity, a highly sensitive high performance liquid chromatography (HPLC) method using a fluorescent reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was applied to determinate the oleic acid (OA) generated from triolein by LPL activity without multiple solvents extraction step. We studied the optimal conditions of the reaction including the effect of emulsifiers, deproteinizing solvents, and the concentration of bovine serum albumin (BSA). Ten millimolar concentrations of triolein, 5% of BSA, 1% of Gum arabic (GA), and acetonitrile showed the optimum conditions for measuring the LPL activity. The accuracy values for the determination of LPL activity in 10 microL of rat post heparin plasma were 108.73 approximately 114.36%, and the intra- and inter-day precision values were within 1.28% and 2.91%, respectively. The limit of detection was about 4.53 nM (signal-to-noise ratio 3). The proposed method was applied to determination of LPL activity in post heparin plasma of normal and streptozotocininduced diabetic rats associated with 52.3% reduction. The established assay system could be used for determining LPL activity in different physiological and pathological conditions to clarify the relationship between LPL activity and diabetes mellitus.
Collapse
Affiliation(s)
- Yu-Ching Chou
- Department of Pharmaceutical Analysis, School of Pharmacy, Taipei Medical University, No. 250, Wu-Hsing St, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Kobayashi Y, Nakajima T, Inoue I. Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4701-10. [PMID: 12230584 DOI: 10.1046/j.1432-1033.2002.03179.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoprotein lipase (LPL) plays a key role in lipid metabolism. Molecular modeling of dimeric LPL was carried out using insight ii based upon the crystal structures of human, porcine, and horse pancreatic lipase. The dimeric model reveals a saddle-shaped structure and the key heparin-binding residues in the amino-terminal domain located on the top of this saddle. The models of two dimeric conformations - a closed, inactive form and an open, active form - differ with respect to how surface-loop positions affect substrate access to the catalytic site. In the closed form, the surface loop covers the catalytic site, which becomes inaccessible to solvent. Large conformational changes in the open form, especially in the loop and carboxyl-terminal domain, allow substrate access to the active site. To dissect the structure-function relationships of the LPL carboxyl-terminal domain, several residues predicted by the model structure to be essential for the functions of heparin binding and substrate recognition were mutagenized. Arg405 plays an important role in heparin binding in the active dimer. Lys413/Lys414 or Lys414 regulates heparin affinity in both monomeric and dimeric forms. To evaluate the prediction that LPL forms a homodimer in a 'head-to-tail' orientation, two inactive LPL mutants - a catalytic site mutant (S132T) and a substrate-recognition mutant (W390A/W393A/W394A) - were cotransfected into COS7 cells. Lipase activity could be recovered only when heterodimerization occurred in a head-to-tail orientation. After cotransfection, 50% of the wild-type lipase activity was recovered, indicating that lipase activity is determined by the interaction between the catalytic site on one subunit and the substrate-recognition site on the other.
Collapse
Affiliation(s)
- Yoko Kobayashi
- Division of Genetic Diagnosis, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Cushley RJ, Okon M. NMR studies of lipoprotein structure. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:177-206. [PMID: 11988467 DOI: 10.1146/annurev.biophys.31.101101.140910] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early NMR structural studies of serum lipoproteins were based on (1)H, (13)C, (31)P, and (2)H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments. Finally, use of heteronuclear three- and four-dimensional experiments have yielded solution structures and protein-lipid interactions of intact apolipoproteins C-I, C-II, and A-I.
Collapse
Affiliation(s)
- Robert J Cushley
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada.
| | | |
Collapse
|
7
|
Liu XY, Nakamura C, Yang Q, Miyake J. Phospholipase A(2)-catalyzed membrane leakage studied by immobilized liposome chromatography with online fluorescent detection. Anal Biochem 2001; 293:251-7. [PMID: 11399040 DOI: 10.1006/abio.2001.5136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Unilamellar liposomes composed of phosphatidylcholine with an entrapped self-quenching fluorescent dye, calcein, were immobilized in chromatographic gel beads by avidin-biotin binding. Bee venom phospholipase A(2) (PLA(2)) was applied in a small amount onto the immobilized liposome column. The release of calcein from the immobilized liposomes resulting from the catalyzed hydrolysis of the phospholipids was detected online by immobilized liposome chromatography (ILC) using a flow fluorescent detector. The PLA(2)-catalyzed membrane leakage of the immobilized liposomes as studied with ILC was found to be affected by the gel pore size used for immobilization, by liposome size, and as expected by the concentration of calcium, but was unaffected by the flow rate of ILC. The largest PLA(2)-induced calcein release from the liposome column was detected on large unilamellar liposomes immobilized on TSK G6000PW or Sephacryl S-1000 gel in the presence of 1 mM Ca(2+) in the aqueous mobile phase. Comparison with the PLA(2)-catalyzed membrane leakage in free liposome suspensions, we conclude that the fluorescent leakage from liposomes hydrolyzed by PLA(2) can be rapidly and sensitively detected by ILC runs using large amount of immobilized liposomes with entrapped fluorescent dye.
Collapse
Affiliation(s)
- X Y Liu
- Tissue Engineering Research Center, National Institute for Advanced Inudstrial Science and Technology, 1-1-4 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | | | | | | |
Collapse
|
8
|
Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:71-82. [PMID: 11080678 DOI: 10.1016/s1388-1981(00)00111-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a considerable body of evidence to support the antibacterial properties of the group IIa phospholipase A(2) as an important physiological function. This enzyme is able to act as an acute phase protein and may be part of the innate defence system of the body, acting in concert with other antibacterial proteins and peptides. The enzyme is most effective against Gram-positive bacteria whereas penetration of the lipopolysaccharide coat of Gram-negative bacteria requires bactericidal/permeability-increasing protein (BPI) as an additional permeabilizing factor. The global cationic nature of this protein (pI>10.5) appears to facilitate penetration of the anionic bacterial cell wall. In addition, the considerable preference of the enzyme for anionic phospholipid interfaces provides specificity toward anionic bacterial membranes as opposed to zwitterionic eucaryotic cell membranes.
Collapse
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | |
Collapse
|
9
|
Storjohann R, Rozek A, Sparrow JT, Cushley RJ. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:253-64. [PMID: 10903476 DOI: 10.1016/s1388-1981(00)00062-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the three-dimensional structure of a biologically active peptide of apolipoprotein C-II (apoC-II) in the presence of lipid mimetics by CD and NMR spectroscopy. This peptide, corresponding to residues 44-79 of apoC-II, has been shown to reverse the symptoms of genetic apoC-II deficiency in a human subject. A comparison of alpha-proton secondary shifts and CD spectroscopic data indicates that the structure of apoC-II(44-79) is similar in the presence of dodecylphosphocholine and sodium dodecyl sulfate. The three-dimensional structure of apoC-II(44-79) in the presence of sodium dodecyl sulfate, determined by relaxation matrix calculations, contains two amphipathic helical domains formed by residues 50-58 and 67-75, separated by a non-helical linker centered at Tyr63. The C-terminal helix is terminated by a loop formed by residues 76-79. The C-terminal helix is better defined and has a larger hydrophobic face than the N-terminal helix, which leads us to propose that the C-terminal helix together with the non-helical Ile66 constitute the primary lipid binding domain of apoC-II(44-79). Based on our structure we suggest a new mechanism of lipoprotein lipase activation in which both helices of apoC-II(44-79) remain lipid bound, while the seven-residue interhelical linker extends away from the lipid surface in order to project Tyr63 into the apoC-II binding site of lipoprotein lipase.
Collapse
Affiliation(s)
- R Storjohann
- Institute of Molecular Biology and Biochemistry and Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|
10
|
Demant EJ. Bovine serum albumin-(7-hydroxycoumarin-4-acetic acid) complex: applications to the fluorometric measurement of fatty acid concentrations. Anal Biochem 1999; 267:366-72. [PMID: 10036143 DOI: 10.1006/abio.1998.3019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A covalent complex between bovine serum albumin and 7-hydroxycoumarin-4-acetic acid (BSA-HCA) shows a strong fluorescence band at lambdamax = 450 nm upon excitation at 375 nm. Quenching of the fluorescence emission accompanies the association of fatty acids (FA) to BSA-HCA and the application of the complex as a spectrofluorometric probe for measurement of fatty acid concentrations in aqueous solution is examined. Binding constants for various long-chain fatty acids (Kd = 14-460 nM) and calibration curves characterizing the probe have been determined. Standardized assay conditions allow for accurate measurements in the concentration range of 10 nM to 5 microM. BSA-HCA provides a stable and sensitive fluorescence-based FA probe with potential biochemical applications.
Collapse
Affiliation(s)
- E J Demant
- Biochemistry Laboratory C, Panum Institute, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
11
|
Abstract
In this review we discuss the metabolism of parenteral emulsions in relation to their natural counterpart, the chylomicrons. A major reaction is lipoprotein lipase-mediated hydrolysis of triglycerides at the vascular endothelium in extrahepatic tissues. The lipase is retained at the cell surface by interactions with heparan sulfate proteoglycans but can move along the surface. Lipoproteins and emulsion particles are initially steered to the endothelium by electrostatic forces. These weak interactions are reinforced by recruitment of lipase molecules. Small particles, whether injected as such or formed as remnants of larger particles, are catabolized mainly through receptor-mediated endocytosis in the liver. In contrast, many of the larger particles are removed by other, less well defined, mechanisms.
Collapse
Affiliation(s)
- G Olivecrona
- Department of Medical Biochemistry and Biophysics, University of Umeå, Sweden.
| | | |
Collapse
|
12
|
Lobo LI, Wilton DC. Combined effects of sphingomyelin and cholesterol on the hydrolysis of emulsion particle triolein by lipoprotein lipase. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1349:122-30. [PMID: 9421185 DOI: 10.1016/s0005-2760(97)00127-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sphingomyelin (SM) is one of the major lipids in lipoproteins. However, its function in lipoprotein metabolism is unknown. In an attempt to understand the role that this lipid plays in modulation of lipoprotein lipase (LPL)-mediated hydrolysis, triolein-based emulsion particles containing 15% (physiological concentration) and 30% of the phospholipid content as SM together with phosphatidyl choline were used as substrate for the enzyme. Using a continuous fluorescence displacement assay to measure triglyceride (triolein) hydrolysis, it is shown that LPL activity was not modified by physiological concentrations of SM. However, under these assay conditions the presence of 30% SM inhibited LPL hydrolysis. SM and cholesterol (a normal component of the lipoprotein surface monolayer) become closely associated in phospholipid monolayers and bilayers. Incorporation of cholesterol into emulsion particles containing only PC increased LPL activity, but this increase was reduced by the additional presence of a physiological concentration (15%) of SM. These model studies suggest that the ratio, cholesterol:SM, in the monolayer may regulate the hydrolytic activity of the LPL. The production of ceramide by sphingomyelinase pre-treatment of emulsion particles containing SM leads to a two- to three-fold increase in LPL activity. This effect was dependent on sphingomyelinase concentration and time of pre-incubation and was not seen with cholesterol containing substrates. The ability of apolipoprotein CII to enhance LPL-catalysed triolein hydrolysis was not affected by the presence of SM; however, the stimulatory effect of this apolipoprotein was attenuated by pre-treatment of emulsion particles with sphingomyelinase. In summary, physiological concentrations of SM can inhibit the hydrolysis of cholesterol-containing emulsion particles; while pre-treatment of SM containing emulsion particles with sphingomyelinase in the absence of cholesterol can increase LPL-mediated triglyceride hydrolysis.
Collapse
Affiliation(s)
- L I Lobo
- Department of Biochemistry, University of Southampton, UK
| | | |
Collapse
|