1
|
A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels. Biophys J 2019; 117:377-387. [PMID: 31278002 DOI: 10.1016/j.bpj.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 11/24/2022] Open
Abstract
After opening, the Shaker voltage-gated potassium (KV) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid α-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of KV channels to the inactivated state.
Collapse
|
2
|
Prince A, Pfaffinger PJ. Conserved N-terminal negative charges support optimally efficient N-type inactivation of Kv1 channels. PLoS One 2013; 8:e62695. [PMID: 23638135 PMCID: PMC3634772 DOI: 10.1371/journal.pone.0062695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 12/02/2022] Open
Abstract
N-type inactivation is produced by the binding of a potassium channel's N-terminus within the open pore, blocking conductance. Previous studies have found that introduction of negative charges into N-terminal inactivation domains disrupts inactivation; however, the Aplysia AKv1 N-type inactivation domain contains two negatively charged residues, E2 and E9. Rather than being unusual, sequence analysis shows that this N-terminal motif is highly conserved among Kv1 sequences across many phyla. Conservation analysis shows some tolerance at position 9 for other charged residues, like D9 and K9, whereas position 2 is highly conserved as E2. To examine the functional importance of these residues, site directed mutagenesis was performed and effects on inactivation were recorded by two electrode voltage clamp in Xenopus oocytes. We find that inclusion of charged residues at positions 2 and 9 prevents interactions with non-polar sites along the inactivation pathway increasing the efficiency of pore block. In addition, E2 appears to have additional specific electrostatic interactions that stabilize the inactivated state likely explaining its high level of conservation. One possible explanation for E2's unique importance, consistent with our data, is that E2 interacts electrostatically with a positive charge on the N-terminal amino group to stabilize the inactivation domain at the block site deep within the pore. Simple electrostatic modeling suggests that due to the non-polar environment in the pore in the blocked state, even a 1 Å larger separation between these charges, produced by the E2D substitution, would be sufficient to explain the 65× reduced affinity of the E2D N-terminus for the pore. Finally, our studies support a multi-step, multi-site N-type inactivation model where the N-terminus interacts deep within the pore in an extended like structure placing the most N-terminal residues 35% of the way across the electric field in the pore blocked state.
Collapse
Affiliation(s)
- Alison Prince
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul J. Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Supramolecular structure of membrane-associated polypeptides by combining solid-state NMR and molecular dynamics simulations. Biophys J 2012; 103:29-37. [PMID: 22828329 DOI: 10.1016/j.bpj.2012.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 02/02/2023] Open
Abstract
Elemental biological functions such as molecular signal transduction are determined by the dynamic interplay between polypeptides and the membrane environment. Determining such supramolecular arrangements poses a significant challenge for classical structural biology methods. We introduce an iterative approach that combines magic-angle spinning solid-state NMR spectroscopy and atomistic molecular dynamics simulations for the determination of the structure and topology of membrane-bound systems with a resolution and level of accuracy difficult to obtain by either method alone. Our study focuses on the Shaker B ball peptide that is representative for rapid N-type inactivating domains of voltage-gated K(+) channels, associated with negatively charged lipid bilayers.
Collapse
|
4
|
Fan Z, Zhang Z, Fu M, Qi Z, Xiao Z. Effect of inserting charged peptide at NH(2)-terminal on N-type inactivation of Kv1.4 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196347 DOI: 10.1016/j.bbamem.2012.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid inactivation of voltage-gated potassium channel plays an important role in shaping the electrical signaling in neurons and other excitable cells. N-type ("ball and chain") inactivation, as the most extensively studied inactivation model, is assumed to be the inactivation mechanism of Kv1.4 channel. The inactivation ball inactivates the channel by interacting with the hydrophobic wall of inner pore and occluding it. Recently, we have proved that the electrostatic interaction between two charged segments in the NH(2)-termainal plays an important role through promoting the inactivation process of the Kv1.4 channel. This study investigates the effect of inserting negatively or positively charged short peptides at NH(2)-terminal on the inactivation of Kv1.4 channel. The results that inserting negatively-charged peptide (either myc or D-peptide) at different sites of NH(2)-terminal, deceleraes inactivation process of Kv1.4 channel to a different extent with inserting site changing and that the mutant Kv1.4-D50 exhibits a more slower inactivation rate than Kv1.4-K50 further identified the role of electrostatic interactions in the "ball and chain" inactivation mechanism.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Physiology, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
5
|
Interaction between soluble and membrane-embedded potassium channel peptides monitored by Fourier transform infrared spectroscopy. PLoS One 2012; 7:e49070. [PMID: 23145073 PMCID: PMC3493504 DOI: 10.1371/journal.pone.0049070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4–S6 of the Shaker Kv channel (KV1; including the S4–S5 linker “pre-inactivation” ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm−1) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4–S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction.
Collapse
|
6
|
Fan Z, Ji X, Fu M, Zhang W, Zhang D, Xiao Z. Electrostatic interaction between inactivation ball and T1-S1 linker region of Kv1.4 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:55-63. [PMID: 21996039 DOI: 10.1016/j.bbamem.2011.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 10/17/2022]
Abstract
Inactivation of potassium channels plays an important role in shaping the electrical signaling properties of nerve and muscle cells. The rapid inactivation of Kv1.4 has been assumed to be controlled by a "ball and chain" inactivation mechanism. Besides hydrophobic interaction between inactivation ball and the channel's inner pore, the electrostatic interaction has also been proved to participate in the "ball and chain" inactivation process of Kv1.4 channel. Based on the crystal structure of Kv1.2 channel, the acidic T1-S1 linker is indicated to be a candidate interacting with the positively charged hydrophilic region of the inactivation domain. In this study, through mutating the charged residues to amino acids of opposite polar, we identified the electrostatic interaction between the inactivation ball and the T1-S1 linker region of Kv1.4 channel. Inserting negatively charged peptide at the amino terminal of Kv1.4 channel further confirmed the electrostatic interaction between the two regions.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | |
Collapse
|
7
|
Molina ML, Barrera FN, Encinar JA, Renart ML, Fernández AM, Poveda JA, Santoro J, Bruix M, Gavilanes F, Fernández-Ballester G, Neira JL, González-Ros JM. N-type inactivation of the potassium channel KcsA by the Shaker B "ball" peptide: mapping the inactivating peptide-binding epitope. J Biol Chem 2008; 283:18076-85. [PMID: 18430729 DOI: 10.1074/jbc.m710132200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of the inactivating peptide from the eukaryotic Shaker BK(+) channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr(8), which exhibit the strongest STD effects; the C4H in the imidazole ring of His(16); the methyl protons of Val(4), Leu(7), and Leu(10) and the side chain amine protons of one, if not both, the Lys(18) and Lys(19) residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val(4) and Leu(10), whereas His(16) seems similarly affected as before. Conversely, STD effects on Tyr(8) are strongly diminished, and those on Lys(18) and/or Lys(19) are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of (13)C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a beta-hairpin structure when bound to the KcsA channel. Indeed, docking such a beta-hairpin structure into an open pore model for K(+) channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.
Collapse
Affiliation(s)
- M Luisa Molina
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Encinar JA, Fernández AM, Poveda JA, Molina ML, Albar JP, Gavilanes F, Gonzalez-Ros JM. Probing the channel-bound shaker B inactivating peptide by stereoisomeric substitution at a strategic tyrosine residue. Biochemistry 2003; 42:8879-84. [PMID: 12873149 DOI: 10.1021/bi0343121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic peptide patterned after the sequence of the inactivating ball domain of the Shaker B K(+) channel, the ShB peptide, fully restores fast inactivation in the deletion Shaker BDelta6-46 K(+) channel, which lacks the constitutive ball domains. On the contrary, a similar peptide in which tyrosine 8 is substituted by the secondary structure-disrupting d-tyrosine stereoisomer does not. This suggests that the stereoisomeric substitution prevents the peptide from adopting a structured conformation when bound to the channel during inactivation. Moreover, characteristic in vitro features of the wild-type ShB peptide such as the marked propensity to adopt an intramolecular beta-hairpin structure when challenged by anionic phospholipid vesicles, a model target mimicking features of the inactivation site in the channel protein, or to insert into their hydrophobic bilayers, are lost in the d-tyrosine-containing peptide, whose behavior is practically identical to that of noninactivating peptide mutants. In the absence of high resolution crystallographic data on the inactivated channel/peptide complex, these latter findings suggest that the structured conformation required for the peptide to promote channel inactivation, as referred to above, is likely to be beta-hairpin.
Collapse
Affiliation(s)
- J A Encinar
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Poveda JA, Prieto M, Encinar JA, González-Ros JM, Mateo CR. Intrinsic tyrosine fluorescence as a tool to study the interaction of the shaker B "ball" peptide with anionic membranes. Biochemistry 2003; 42:7124-32. [PMID: 12795608 DOI: 10.1021/bi027183h] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and time-resolved fluorescence from the single tyrosine in the inactivating peptide of the Shaker B potassium channel (ShB peptide) and in a noninactivating peptide mutant, ShB-L7E, has been used to characterize their interaction with anionic phospholipid membranes, a model target mimicking features of the inactivation site on the channel protein. Partition coefficients derived from steady-state anisotropy indicate that both peptides show a high affinity for anionic vesicles, being higher in ShB than in ShB-L7E. Moreover, differential quenching by lipophilic spin-labeled probes and fluorescence energy transfer using trans-parinaric acid as the acceptor confirm that the ShB peptide inserts deep into the membrane, while the ShB-L7E peptide remains near the membrane surface. The rotational mobility of tyrosine in membrane-embedded ShB, examined from the decay of fluorescence anisotropy, can be described by two different rotational correlation times and a residual constant value. The short correlation time corresponds to fast rotation reporting on local tyrosine mobility. The long rotational correlation time and the high residual anisotropy suggest that the ShB peptide diffuses in a viscous and anisotropic medium compatible with the aliphatic region of a lipid bilayer and support the hypothesis that the peptide inserts into it as a monomer, to configure an intramolecular beta-hairpin structure. Assuming that this hairpin structure behaves like a rigid body, we have estimated its dimensions and rotational dynamics, and a model for the peptide inserted into the bilayer has been proposed.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain
| | | | | | | | | |
Collapse
|
10
|
Encinar JA, Fernández AM, Molina ML, Molina A, Poveda JA, Albar JP, López-Barneo J, Gavilanes F, Ferrer-Montiel AV, González-Ros JM. Tyrosine phosphorylation of the inactivating peptide of the shaker B potassium channel: a structural-functional correlate. Biochemistry 2002; 41:12263-9. [PMID: 12356329 DOI: 10.1021/bi020188u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic peptide patterned after the sequence of the inactivating "ball" domain of the Shaker B K(+) channel restores fast (N-type) inactivation in mutant deletion channels lacking their constitutive ball domains, as well as in K(+) channels that do not normally inactivate. We now report on the effect of phosphorylation at a single tyrosine in position 8 of the inactivating peptide both on its ability to restore fast channel inactivation in deletion mutant channels and on the conformation adopted by the phosphorylated peptide when challenged by anionic lipid vesicles, a model target mimicking features of the inactivation site in the channel protein. We find that the inactivating peptide phosphorylated at Y8 behaves functionally as well as structurally as the noninactivating mutant carrying the mutation L7E. Moreover, it is observed that the inactivating peptide can be phosphorylated by the Src tyrosine kinase either as a free peptide in solution or when forming part of the membrane-bound protein channel as the constitutive inactivating domain. These findings suggest that tyrosine phosphorylation-dephosphorylation of this inactivating ball domain could be of physiological relevance to rapidly interconvert fast-inactivating channels into delayed rectifiers and vice versa.
Collapse
Affiliation(s)
- J A Encinar
- Centro de Biologia Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|