1
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
2
|
Schwartz M, Boichot V, Muradova M, Fournier P, Senet P, Nicolai A, Canon F, Lirussi F, Ladeira R, Maibeche M, Chertemps T, Aubert E, Didierjean C, Neiers F. Structure-activity analysis suggests an olfactory function for the unique antennal delta glutathione transferase of Apis mellifera. FEBS Lett 2023; 597:3038-3048. [PMID: 37933500 DOI: 10.1002/1873-3468.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Glutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH…S hydrogen bonds and S…S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Valentin Boichot
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Mariam Muradova
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
- International Research Center "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | | | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Francis Canon
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Frederic Lirussi
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Ruben Ladeira
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Martine Maibeche
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Thomas Chertemps
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | | | | | - Fabrice Neiers
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| |
Collapse
|
3
|
Bazzi W, Monticelli S, Delaporte C, Riet C, Giangrande A, Cattenoz PB. Gcm counteracts Toll-induced inflammation and impacts hemocyte number through cholinergic signaling. Front Immunol 2023; 14:1293766. [PMID: 38035083 PMCID: PMC10684909 DOI: 10.3389/fimmu.2023.1293766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.
Collapse
Affiliation(s)
- Wael Bazzi
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Sara Monticelli
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claude Delaporte
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Céline Riet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Angela Giangrande
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Pierre B. Cattenoz
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
4
|
Mazari AMA, Zhang L, Ye ZW, Zhang J, Tew KD, Townsend DM. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023; 13:688. [PMID: 37189435 PMCID: PMC10136111 DOI: 10.3390/biom13040688] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In humans, the cytosolic glutathione S-transferase (GST) family of proteins is encoded by 16 genes presented in seven different classes. GSTs exhibit remarkable structural similarity with some overlapping functionalities. As a primary function, GSTs play a putative role in Phase II metabolism by protecting living cells against a wide variety of toxic molecules by conjugating them with the tripeptide glutathione. This conjugation reaction is extended to forming redox sensitive post-translational modifications on proteins: S-glutathionylation. Apart from these catalytic functions, specific GSTs are involved in the regulation of stress-induced signaling pathways that govern cell proliferation and apoptosis. Recently, studies on the effects of GST genetic polymorphisms on COVID-19 disease development revealed that the individuals with higher numbers of risk-associated genotypes showed higher risk of COVID-19 prevalence and severity. Furthermore, overexpression of GSTs in many tumors is frequently associated with drug resistance phenotypes. These functional properties make these proteins promising targets for therapeutics, and a number of GST inhibitors have progressed in clinical trials for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Aslam M. A. Mazari
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Danyelle M. Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
6
|
da Silva TP, Geraldelli D, Martins KO, Braga AJL, Rosa AP, Ferneda JMDA, Bomfim GF, Barbosa-Dekker ADM, Dekker RFH, Dias MC, Paim NP, Sinhorin VDG, de Queiroz EAIF. Antioxidant, anti-inflammatory and beneficial metabolic effects of botryosphaeran [(1→3)(1→6)-β-d-glucan] are responsible for its anti-tumour activity in experimental non-obese and obese rats bearing Walker-256 tumours. Cell Biochem Funct 2022; 40:213-227. [PMID: 35229356 DOI: 10.1002/cbf.3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Botryosphaeran, a (1→3)(1→6)-β-d-glucan, presents several beneficial activities, such as antiproliferative, hypoglycemic and antitumoural activities. This study evaluated the effects of botryosphaeran on oxidative stress, inflammation and metabolic activities in Walker-256 tumour-bearing non-obese and obese rats. Wistars rats were divided into four groups: control tumour (CT); control tumour + botryosphaeran (CTB); obese tumour (OT), and obese tumour + botryosphaeran (OTB). In ninth week, obese and non-obese rats were inoculated with 1 × 107 Walker-256 tumour cells and treated with botryosphaeran (30 mg/kg/d for 15 days). In 11th week, the following parameters were evaluated glycogen, glucose and lactate levels, pro-oxidant (TBARS) and antioxidant markers (superoxide dismutase [SOD]; catalase [CAT]; glutathione-S-transferase [GST]; reduced glutathione [GSH]; vitamin C) and cytokines. Obesity presented oxidative stress and inflammation, as demonstrated by high levels of TBARS, SOD and TNF-α, and lower levels of CAT, GSH and interleukin-10 (IL-10). Botryosphaeran significantly decreased TBARS and TNF-α and increased GST, GSH, vitamin C and IL-10 in the liver; increased SOD and vitamin C in tumour tissue; decreased TBARS in adipose tissue, and notably decreased the levels of glycogen and lactate in the tumour of CTB rats. Botryosphaeran promoted significant antioxidant, anti-inflammatory, and beneficial metabolic effects in Walker-256 tumour-bearing non-obese and obese rats, which contributed to its antitumour activity.
Collapse
Affiliation(s)
- Thais Pereira da Silva
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Danielli Geraldelli
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Kamila Ortega Martins
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Ana Júlia Lopes Braga
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Andrielli Pompermayer Rosa
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | | | - Gisele Facholi Bomfim
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Aneli de Melo Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Londrina, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, Londrina, Brazil
| | - Marcos Correa Dias
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Neiva Pereira Paim
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| | - Eveline Aparecida Isquierdo Fonseca de Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Programa de Pós-Graduação Ciências em Saúde, Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Câmpus Universitário de Sinop, Sinop, Brazil
| |
Collapse
|
7
|
Perperopoulou F, Poudel N, Papageorgiou AC, Ataya FS, Labrou NE. Structural and Functional Characterization of Camelus dromedarius Glutathione Transferase M1-1. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010106. [PMID: 35054499 PMCID: PMC8780062 DOI: 10.3390/life12010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Glutathione transferases (GSTs; EC. 2.5.1.18) are a large family of multifunctional enzymes that play crucial roles in the metabolism and inactivation of a broad range of xenobiotic compounds. In the present work, we report the kinetic and structural characterization of the isoenzyme GSTM1-1 from Camelus dromedarius (CdGSTM1-1). The CdGSΤM1-1 was expressed in E. coli BL21 (DE3) and was purified by affinity chromatography. Kinetics analysis showed that the enzyme displays a relative narrow substrate specificity and restricted ability to bind xenobiotic compounds. The crystal structures of CdGSΤM1-1 were determined by X-ray crystallography in complex with the substrate (GSH) or the reaction product (S-p-nitrobenzyl-GSH), providing snapshots of the induced-fit catalytic mechanism. The thermodynamic stability of CdGSTM1-1 was investigated using differential scanning fluorimetry (DSF) in the absence and in presence of GSH and S-p-nitrobenzyl-GSH and revealed that the enzyme’s structure is significantly stabilized by its ligands. The results of the present study advance the understanding of camelid GST detoxification mechanisms and their contribution to abiotic stress adaptation in harsh desert conditions.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
| | - Nirmal Poudel
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (N.P.); (A.C.P.)
| | - Anastassios C. Papageorgiou
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (N.P.); (A.C.P.)
| | - Farid S. Ataya
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
- Correspondence: ; Tel.: +30-210-5294308
| |
Collapse
|
8
|
Schwartz M, Menetrier F, Heydel JM, Chavanne E, Faure P, Labrousse M, Lirussi F, Canon F, Mannervik B, Briand L, Neiers F. Interactions Between Odorants and Glutathione Transferases in the Human Olfactory Cleft. Chem Senses 2021; 45:645-654. [PMID: 32822468 DOI: 10.1093/chemse/bjaa055] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites). Enzymes, such as cytochrome P450 and glutathione transferases (GSTs), have been proposed to participate in odorant clearance in insects and mammals as odorant metabolizing enzymes. This study aims to explore the function of GSTs in human olfaction. Using immunohistochemical methods, GSTs were found to be localized in human tissues surrounding the olfactory epithelium. Then, the activity of 2 members of the GST family toward odorants was measured using heterologously expressed enzymes. The interactions/reactions with odorants were further characterized using a combination of enzymatic techniques. Furthermore, the structure of the complex between human GSTA1 and the glutathione conjugate of an odorant was determined by X-ray crystallography. Our results strongly suggest the role of human GSTs in the modulation of odorant availability to ORs in the peripheral olfactory process.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Franck Menetrier
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Jean-Marie Heydel
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Evelyne Chavanne
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Philippe Faure
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Marc Labrousse
- Laboratoire d'Anatomie, UFR Médecine de Reims, Université de Reims Champagne Ardenne, Reims, France
| | - Frédéric Lirussi
- Université de Bourgogne-Franche Comté, INSERM U1231, University Hospital of Dijon, Dijon, France
| | - Francis Canon
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Loïc Briand
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne-Franche Comté, CNRS, INRA, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| |
Collapse
|
9
|
Valli M, Atanázio LCV, Monteiro GC, Coelho RR, Demarque DP, Andricopulo AD, Espindola LS, Bolzani VDS. The Potential of Biologically Active Brazilian Plant Species as a Strategy to Search for Molecular Models for Mosquito Control. PLANTA MEDICA 2021; 87:6-23. [PMID: 33348409 DOI: 10.1055/a-1320-4610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.
Collapse
Affiliation(s)
- Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Letícia Cristina Vieira Atanázio
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo Claro Monteiro
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Roberta Ramos Coelho
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Laila Salmen Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
10
|
Lee WP, Li ML, Liu YT, Lee CM, Yao HT. Qing-Yu-Mu, an Herbal Formula, Reduces Hepatic Oxidative Stress in Rats Fed a High-Frying Oil Diet and Ameliorates Carbon Tetrachloride-Induced Liver Injury. J Med Food 2020; 24:77-88. [PMID: 33185481 DOI: 10.1089/jmf.2020.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Qing-Yu-Mu (QYM) is an herbal formula used to prevent and treat liver disease in Taiwan. In this study, the hepatoprotective effects of QYM were evaluated in two experimental models. First, rats were fed a high-frying oil (FO) diet containing 1.25% QYM for 5 weeks to investigate effects of QYM on hepatic oxidative stress and antioxidant enzyme activities. Then, protective effects of QYM on carbon tetrachloride (CCl4)-induced chronic liver injury were evaluated. Results show that QYM treatment reduced FO diet-induced hepatic lipid peroxidation and reactive oxygen species levels and increased glutathione (GSH) S-transferase activity. A higher reduced GSH/oxidized GSH (GSSG) ratio was observed after QYM treatment. Furthermore, QYM ameliorated CCl4-induced liver injury by reducing the activity of plasma alanine aminotransferase and histological lesions in the liver. QYM also increased the level of hepatic GSH and activities of GSH peroxidase and superoxide dismutase. Finally, chlorogenic acid, chrysophanol, and apigenin were found to be present in relative abundance in QYM. Results show that QYM may exhibit a hepatoprotective effect by reducing oxidative stress and increasing antioxidant activity in the liver.
Collapse
Affiliation(s)
- Wen-Pin Lee
- Japin Biotechnology Company, Taichung, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yun-Ta Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Association of combined genetic variations in SOD3, GPX3, PON1, and GSTT1 with hypertension and severity of coronary artery disease. Heart Vessels 2020; 35:918-929. [PMID: 32034489 DOI: 10.1007/s00380-020-01564-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of hypertension (HT) and the progression of atherosclerotic coronary artery disease (CAD). Genetic variations in superoxide dismutase (SOD), glutathione peroxidase 3 (GPX3), paraoxonase 1 (PON1) and glutathione S-transferase theta 1 (GSTT1) may modulate their gene functions, affecting protein functions. These changes could have an impact on the pathogenesis of HT and progression of CAD. The present study investigated the associations of individual and combined antioxidant-related gene polymorphisms with the incidence of HT and severity of CAD. Two study populations were enrolled. The HT-associated study comprised 735 control and 735 hypertensive subjects (mean age 59.3 ± 9.0 years), matched for age and sex. The CAD study, hospital-based subjects (mean age 62.1 ± 9.5 years), included 279 CAD patients and 165 non-CAD subjects. Gene polymorphisms were identified in genomic DNA using polymerase chain reaction (PCR)-based technique. Genetic variations were assessed for their associations with HT and severity of CAD. Antioxidant gene variants, SOD3 rs2536512-GG, GPX3 rs3828599-GG, PON1 rs705379-TT, and GSTT1-/- and +/-, were independently associated with the incidence of HT. A combination of four HT-associated genotypes, as a genetic risk score (GRS), revealed an association of GRS 5 and GRS ≥ 6 with increased susceptibility to HT and CAD, and further with multivessel coronary atherosclerosis (multivessel CAD) compared with GRS 0-2 [respective ORs(95% CI) for GRS ≥ 6 = 2.37 (1.46-3.85), 3.26 (1.29-8.25), and 4.36 (1.36-14.0)]. Combined polymorphisms in these four antioxidant-related genes were associated with the incidences of HT and CAD, and with the severity of coronary atherosclerosis.
Collapse
|
12
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Si M, Che C, Li G, Li X, Gong Z, Liu J, Yang G, Chen C. Characterization of Xi-class mycothiol S-transferase from Corynebacterium glutamicum and its protective effects in oxidative stress. Microb Cell Fact 2019; 18:182. [PMID: 31655587 PMCID: PMC6815410 DOI: 10.1186/s12934-019-1232-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/12/2019] [Indexed: 01/17/2023] Open
Abstract
Background Oxidative stress caused by inevitable hostile conditions during fermentative process was the most serious threat to the survival of the well-known industrial microorganism Corynebacterium glutamicum. To survive, C. glutamicum developed several antioxidant defenses including millimolar concentrations of mycothiol (MSH) and protective enzymes. Glutathione (GSH) S-transferases (GSTs) with essentially defensive role in oxidative stress have been well defined in numerous microorganisms, while their physiological and biochemical functions remained elusive in C. glutamicum thus far. Results In the present study, we described protein NCgl1216 belonging to a novel MSH S-transferase Xi class (MstX), considered as the equivalent of GST Xi class (GSTX). MstX had a characteristic conserved catalytic motif (Cys-Pro-Trp-Ala, C-P-W-A). MstX was active as thiol transferase, dehydroascorbate reductase, mycothiolyl-hydroquinone reductase and MSH peroxidase, while it showed null activity toward canonical GSTs substrate as 1-chloro-2,4-dinitrobenzene (CDNB) and GST Omega’s specific substance glutathionyl-acetophenones, indicating MstX had some biochemical characteristics related with mycoredoxin (Mrx). Site-directed mutagenesis showed that, among the two cysteine residues of the molecule, only the residue at position 67 was required for the activity. Moreover, the residues adjacent to the active Cys67 were also important for activity. These results indicated that the thiol transferase of MstX operated through a monothiol mechanism. In addition, we found MstX played important role in various stress resistance. The lack of C. glutamicum mstX gene resulted in significant growth inhibition and increased sensitivity under adverse stress condition. The mstX expression was induced by stress. Conclusion Corynebacterium glutamicum MstX might be critically involved in response to oxidative conditions, thereby giving new insight in how C. glutamicum survived oxidative stressful conditions.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Chengchuan Che
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Guanxi Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhijin Gong
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| |
Collapse
|
14
|
Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharaphet P, Senthong V. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ 2019; 7:e7407. [PMID: 31396447 PMCID: PMC6679910 DOI: 10.7717/peerj.7407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress modulates insulin resistant-related atherogenic dyslipidemia: hypertriglyceridemia (HTG) and low high-density lipoprotein cholesterol (HDL-C) level. Gene polymorphisms in superoxide dismutase (SOD2 and SOD3), glutathione peroxidase-3 (GPX3), and glutathione S-transferase theta-1 (GSTT1) may enable oxidative stress-related lipid abnormalities and severity of coronary atherosclerosis. The present study investigated the associations of antioxidant-related gene polymorphisms with atherogenic dyslipidemia and atherosclerotic severity in subjects with high risk of coronary artery disease (CAD). Methods Study population comprises of 396 subjects with high risk of CAD. Gene polymorphisms: SOD2 rs4880, SOD3 rs2536512 and rs2855262, GPX rs3828599, and GSTT1 (deletion) were evaluated the associations with HTG, low HDL-C, high TG/HDL-C ratio, and severity of coronary atherosclerosis. Results SOD2 rs4880-CC, SOD3 rs2536512-AA, rs2855262-CC, and GPX3 rs3828599-AA, but not GSTT1-/- individually increased risk of HTG combined with low HDL-C level. With a combination of five risk-genotypes as a genetic risk score (GRS), GRS ≥ 6 increased risks of low HDL-C, high TG/HDL-C ratio, and HTG combined with low HDL-C, comparing with GRS 0–2 [respective adjusted ORs (95% CI) = 2.70 (1.24–5.85), 3.11 (1.55–6.23), and 5.73 (2.22–14.77)]. Gene polymorphisms, though, were not directly associated with severity of coronary atherosclerosis; high TG/HDL-C ratio was associated with coronary atherosclerotic severity [OR = 2.26 (95% CI [1.17–4.34])]. Conclusion Combined polymorphisms in antioxidant-related genes increased the risk of dyslipidemia related to atherosclerotic severity, suggesting the combined antioxidant-related gene polymorphisms as predictor of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Nisa Decharatchakul
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nongnuch Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nantarat Komanasin
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsak Intharaphet
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Vichai Senthong
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand.,Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Heydel JM, Menetrier F, Belloir C, Canon F, Faure P, Lirussi F, Chavanne E, Saliou JM, Artur Y, Canivenc-Lavier MC, Briand L, Neiers F. Characterization of rat glutathione transferases in olfactory epithelium and mucus. PLoS One 2019; 14:e0220259. [PMID: 31339957 PMCID: PMC6656353 DOI: 10.1371/journal.pone.0220259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
The olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and amino acid catabolism. These enzymes ensure either the capture or the glutathione conjugation of a large number of ligands. Using a multi-technique approach (proteomic, immunocytochemistry and activity assays), our results indicate that GSTs play an important role in the rat olfactory process. First, proteomic analysis demonstrated the presence of different putative odorant metabolizing enzymes, including different GSTs, in the rat nasal mucus. Second, GST expression was investigated in situ in rat olfactory tissues using immunohistochemical methods. Third, the activity of the main GST (GSTM2) odorant was studied with in vitro experiments. Recombinant GSTM2 was used to screen a set of odorants and characterize the nature of its interaction with the odorants. Our results support a significant role of GSTs in the modulation of odorant availability for receptors in the peripheral olfactory process.
Collapse
Affiliation(s)
- Jean-Marie Heydel
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| | - Franck Menetrier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Christine Belloir
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Francis Canon
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Philippe Faure
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Frederic Lirussi
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- Université de Bourgogne, Centre Hospitalier Universitaire de Dijon, INSERM, U1231, Lipides Nutrition Cancer, Équipe labellisée Ligue Nationale contre le Cancer, Dijon, France
| | - Evelyne Chavanne
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-Michel Saliou
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Yves Artur
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Marie-Chantal Canivenc-Lavier
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Loïc Briand
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
| | - Fabrice Neiers
- University Bourgogne Franche-Comté, Faculty of Health Sciences, Dijon, France
- CSGA, Laboratory of taste and olfaction: from the molecule to behavior, University Bourgogne Franche-Comté, INRA, CNRS, France
- * E-mail: (FN); (J-MH)
| |
Collapse
|
16
|
Lee JS, Kang HM, Jeong CB, Han J, Park HG, Lee JS. Protective Role of Freshwater and Marine Rotifer Glutathione S-Transferase Sigma and Omega Isoforms Transformed into Heavy Metal-Exposed Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7840-7850. [PMID: 31244073 DOI: 10.1021/acs.est.9b01460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in phase II of detoxification to protect cells in response to oxidative stress generated by exogenous toxicants. Despite their important role in defense, studies on invertebrate GSTs have mainly focused on identification and characterization. Here, we isolated omega and sigma classes of GSTs from the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus koreanus and explored their antioxidant function in response to metal-induced oxidative stress. The recombinant Bc- and Bk-GSTs were successfully transformed and expressed in Escherichia coli. Their antioxidant potential was characterized by measuring kinetic properties and enzymatic activity in response to pH, temperature, and chemical inhibitor. In addition, a disk diffusion assay, reactive oxygen species assay, and morphological analysis revealed that GST transformed into E. coli significantly protected cells from oxidative stress induced by H2O2 and metals (Hg, Cd, Cu, and Zn). Stronger antioxidant activity was exhibited by GST-S compared to GST-O in both rotifers, suggesting that GST-S plays a prominent function as an antioxidant defense mechanism in Brachionus spp. Overall, our study clearly shows the antioxidant role of Bk- and Bc-GSTs in E. coli and provides a greater understanding of GST class-specific and interspecific detoxification in rotifer Brachionus spp.
Collapse
Affiliation(s)
- Jin-Sol Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Hye-Min Kang
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Chang-Bum Jeong
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Jeonghoon Han
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Heum Gi Park
- Department of Marine Resource Development , Gangneung-Wonju National University , Gangneung , South Korea
| | - Jae-Seong Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
17
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio). Toxicol Sci 2019; 162:702-712. [PMID: 29361160 PMCID: PMC5888913 DOI: 10.1093/toxsci/kfx293] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations.
Collapse
Affiliation(s)
- Alena Tierbach
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
18
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
19
|
Tahir M, Arshid S, Fontes B, Castro MS, Luz IS, Botelho KLR, Sidoli S, Schwämmle V, Roepstorff P, Fontes W. Analysis of the Effect of Intestinal Ischemia and Reperfusion on the Rat Neutrophils Proteome. Front Mol Biosci 2018; 5:89. [PMID: 30555831 PMCID: PMC6281993 DOI: 10.3389/fmolb.2018.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/04/2018] [Indexed: 01/26/2023] Open
Abstract
Intestinal ischemia and reperfusion injury is a model system of possible consequences of severe trauma and surgery, which might result into tissue dysfunction and organ failure. Neutrophils contribute to the injuries preceded by ischemia and reperfusion. However, the mechanisms by which intestinal ischemia and reperfusion stimulate and activate circulating neutrophils is still not clear. In this work, we used proteomics approach to explore the underlying regulated mechanisms in Wistar rat neutrophils after ischemia and reperfusion. We isolated neutrophils from three different biological groups; control, sham laparotomy, and intestinal ischemia/reperfusion. In the workflow, we included iTRAQ-labeling quantification and peptide fractionation using HILIC prior to LC-MS/MS analysis. From proteomic analysis, we identified 2,045 proteins in total that were grouped into five different clusters based on their regulation trend between the experimental groups. A total of 417 proteins were found as significantly regulated in at least one of the analyzed conditions. Interestingly, the enzyme prediction analysis revealed that ischemia/reperfusion significantly reduced the relative abundance of most of the antioxidant and pro-survival molecules to cause more tissue damage and ROS production whereas some of the significantly up regulated enzymes were involved in cytoskeletal rearrangement, adhesion and migration. Clusters based KEGG pathways analysis revealed high motility, phagocytosis, directional migration, and activation of the cytoskeletal machinery in neutrophils after ischemia and reperfusion. Increased ROS production and decreased phagocytosis were experimentally validated by microscopy assays. Taken together, our findings provide a characterization of the rat neutrophil response to intestinal ischemia and reperfusion and the possible mechanisms involved in the tissue injury by neutrophils after intestinal ischemia and reperfusion.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Samina Arshid
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Isabelle S Luz
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Katyelle L R Botelho
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
20
|
Wang C, Shu L, Zhang C, Li W, Wu R, Guo Y, Yang Y, Kong AN. Histone Methyltransferase Setd7 Regulates Nrf2 Signaling Pathway by Phenethyl Isothiocyanate and Ursolic Acid in Human Prostate Cancer Cells. Mol Nutr Food Res 2018; 62:e1700840. [PMID: 29383876 PMCID: PMC6226019 DOI: 10.1002/mnfr.201700840] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/08/2017] [Indexed: 01/05/2023]
Abstract
SCOPE This study aims to investigate the role of the epigenetic regulator SET domain-containing lysine methyltransferase 7 (Setd7) in regulating the antioxidant Nrf2 pathway in prostate cancer (PCa) cells and examines the effects of two phytochemicals, phenethyl isothiocyanate (PEITC) and ursolic acid (UA). METHODS AND RESULTS Lentivirus-mediated shRNA knockdown of Setd7 in LNCaP and PC-3 cells decreases the expression of downstream Nrf2 targets, such as NAD(P)H: quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase theta 2 (Gstt2). Downregulation of Setd7 decreases soft agar colony formation ability of PCa cells. Knockdown of Setd7 increases reactive oxygen species (ROS) generation. Furthermore, Setd7 knockdown attenuates Nqo1 and Gstt2 expression in response to H2 O2 challenge, whereas increased DNA damage is observed in Setd7 knockdown cells in comet assay. Interestingly, Setd7 expression could be induced by the dietary phytochemicals PEITC and UA. Chromatin immunoprecipitation (ChIP) assays show that Setd7 knockdown decreased H3K4me1 enrichment in the Nrf2 and Gstt2 promoter regions, while PEITC and UA treatments elevated the enrichment. CONCLUSION Taken together, these results indicate that Setd7 knockdown decreases Nrf2 and Nrf2-target genes expression and that PEITC and UA induce Setd7 expression, which activates the Nrf2/antioxidant response element (ARE) signaling pathway and protects DNA from oxidative damage.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
21
|
Gonzalez D, Fraichard S, Grassein P, Delarue P, Senet P, Nicolaï A, Chavanne E, Mucher E, Artur Y, Ferveur JF, Heydel JM, Briand L, Neiers F. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:33-43. [PMID: 29578047 DOI: 10.1016/j.ibmb.2018.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 05/20/2023]
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes that catalyse the conjugation of glutathione to xenobiotic compounds in the detoxification process. GSTs have been proposed to play a dual role in the signal termination of insect chemodetection by modifying odorant and tasting molecules and by protecting the chemosensory system. Among the 40 GSTs identified in Drosophila melanogaster, the Delta and Epsilon groups are insect-specific. GSTs Delta and Epsilon may have evolved to serve in detoxification, and have been associated with insecticide resistance. Here, we report the heterologous expression and purification of the D. melanogaster GST Delta 2 (GSTD2). We investigated the capacity of GSTD2 to bind tasting molecules. Among them, we found that isothiocyanates (ITC), insecticidal compounds naturally present in cruciferous plant and perceived as bitter, are good substrates for GSTD2. The X-ray structure of GSTD2 was solved, showing the absence of the classical Ser catalytic residue, conserved in the Delta and Epsilon GSTs. Using molecular dynamics, the interaction of ITC with the GSTD2 three-dimensional structure is analysed and discussed. These findings allow us to consider a biological role for GSTD2 in chemoperception, considering GSTD2 expression in the chemosensory organs and the potential consequences of insect exposure to ITC.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Paul Grassein
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Evelyne Chavanne
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Elodie Mucher
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Yves Artur
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France.
| |
Collapse
|
22
|
S. Isgor B, G. Isgor Y, Geven F. Cellular Defense Enzyme Profile for Non-cytotoxic and Phenol Enriched Extracts of Heliotropium europaeum, Carlina oligocephala and Echinops ritro. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.224.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Ludovini V, Antognelli C, Rulli A, Foglietta J, Pistola L, Eliana R, Floriani I, Nocentini G, Tofanetti FR, Piattoni S, Minenza E, Talesa VN, Sidoni A, Tonato M, Crinò L, Gori S. Influence of chemotherapeutic drug-related gene polymorphisms on toxicity and survival of early breast cancer patients receiving adjuvant chemotherapy. BMC Cancer 2017; 17:502. [PMID: 28747156 PMCID: PMC5530465 DOI: 10.1186/s12885-017-3483-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We investigated whether GSTT1 ("null" allele), GSTM1 ("null"allele), GSTP1 (A313G), RFC1 (G80A), MTHFR (C677T), TS (2R/3R) polymorphisms were associated with toxicity and survival in patients with early breast cancer (EBC) treated with adjuvant chemotherapy (CT). METHODS This prospective trial included patients with stage I-III BC subjected to CT with CMF or FEC regimens. PCR-RFLP was performed for MTHFR, RFC1 and GSTP1, while PCR for TS, GSTT1 and GSTM1 genes. RESULTS Among the 244 patients consecutively enrolled, 48.7% were treated with FEC and 51.3% with CMF. Patients with TS2R/3R genotype showed less frequently severe neutropenia (G3/G4) than those with TS2R/2R and 3R/3R genotype (p = 0.038). Patients with MTHFRCT genotype had a higher probability of developing severe neutropenia than those with MTHFR CC genotype (p = 0.043). Patients with RFC1GG or GSTT1-null genotype or their combination (GSTT1-null/RFC1GG) were significantly associated with a shorter disease free survival (DFS) (p = 0.009, p = 0.053, p = 0.003, respectively) and overall survival (OS) (p = 0.036, p = 0.015, p = 0.005, respectively). Multivariate analysis confirmed the association of RFC1GG genotype with a shorter DFS (p = 0.018) and of GSTT1-null genotype of a worse OS (p = 0.003), as well as for the combined genotypes GSTT1-null/RFC1GG, (DFS: p = 0.004 and OS: p = 0.003). CONCLUSIONS Our data suggest that TS2R/2R and 3R/3R or MTHFR CT genotypes have a potential role in identifying patients with greater risk of toxicity to CMF/FEC and that RFC1 GG and GSTT1-null genotypes alone or in combination could be important markers in predicting clinical outcome in EBC patients.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Menghini 8/9, 06156 Perugia, Italy
| | - Antonio Rulli
- Breast Unit, Department of Surgical, University of Perugia, Perugia, Italy
| | - Jennifer Foglietta
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Lorenza Pistola
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | - Rulli Eliana
- Oncology Department, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Irene Floriani
- Oncology Department, IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesca Romana Tofanetti
- Medical Oncology Division, S. Maria della Misericordia Hospital, Azienda Ospedaliera of Perugia, Perugia, Italy
| | | | - Elisa Minenza
- Medical Oncology Division, “S. Maria” Hospital, Terni, Italy
| | - Vincenzo Nicola Talesa
- Department of Experimental Medicine, University of Perugia, Piazzale Menghini 8/9, 06156 Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic and Histology, Medical School, University of Perugia, Perugia, Italy
| | | | - Lucio Crinò
- Medical Oncology, Istituto Scientifico Romagnolo per lo studio e la cura dei tumori (IRST), IRCCS, Meldola, Italy
| | - Stefania Gori
- Medical Oncology, SacroCuore-Don Calabria Hospital, Negrar, Verona Italy
| |
Collapse
|
24
|
Fonseca TG, Morais MB, Rocha T, Abessa DMS, Aureliano M, Bebianno MJ. Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:162-172. [PMID: 27744150 DOI: 10.1016/j.scitotenv.2016.09.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Anticancer drugs are designed to inhibit tumor cell proliferation by interacting with DNA and altering cellular growth factors. When released into the waterbodies of municipal and hospital effluents these pharmaceutical compounds may pose a risk to non-target aquatic organisms, due to their mode of action (cytotoxic, genotoxic, mutagenic and teratogenic). The present study aimed to assess the ecotoxicological potential of the alkylating agent cisplatin (CisPt) to the polychaete Nereis diversicolor, at a range of relevant environmental concentrations (i.e. 0.1, 10 and 100ngPtL-1). Behavioural impairment (burrowing kinetic impairment), ion pump effects (SR Ca2+-ATPase), neurotoxicity (AChE activity), oxidative stress (SOD, CAT and GPXs activities), metal exposure (metallothionein-like proteins - MTLP), biotransformation (GST), oxidative damage (LPO) and genotoxicity (DNA damage), were selected as endpoints to evaluate the sublethal responses of the ragworms after 14-days of exposure in a water-sediment system. Significant burrowing impairment occurred in worms exposed to the highest CisPt concentration (100ngPtL-1) along with neurotoxic effects. The activity of antioxidant enzymes (SOD, CAT) and second phase biotransformation enzyme (GST) was inhibited but such effects were compensated by MTLP induction. Furthermore, LPO levels also increased. Results showed that the mode of action of cisplatin may pose a risk to this aquatic species even at the range of ngL-1.
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M B Morais
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - T Rocha
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M Aureliano
- CCMar, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
25
|
Soy isoflavones reduce acetaminophen-induced liver injury by inhibiting cytochrome P-450-mediated bioactivation and glutathione depletion and increasing urinary drug excretion in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Wolinski L, Modenutti B, Souza MS, Balseiro E. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:135-142. [PMID: 26895537 DOI: 10.1016/j.envpol.2016.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.
Collapse
Affiliation(s)
- Laura Wolinski
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina.
| | - Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| | - Maria Sol Souza
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina
| |
Collapse
|
27
|
Abstract
Esophageal cancer (EC) is one of the most common malignancies in low- and medium-income countries and represents a disease of public health importance because of its poor prognosis and high mortality rate in these regions. The striking variation in the prevalence of EC among different ethnic groups suggests a significant contribution of population-specific environmental and dietary factors to susceptibility to the disease. Although individuals within a demarcated geographical area are exposed to the same environment and share similar dietary habits, not all of them will develop the disease; thus genetic susceptibility to environmental risk factors may play a key role in the development of EC. A wide range of xenobiotic-metabolizing enzymes are responsible for the metabolism of carcinogens introduced via the diet or inhaled from the environment. Such dietary or environmental carcinogens can bind to DNA, resulting in mutations that may lead to carcinogenesis. Genes involved in the biosynthesis of these enzymes are all subject to genetic polymorphisms that can lead to altered expression or activity of the encoded proteins. Genetic polymorphisms may, therefore, act as molecular biomarkers that can provide important predictive information about carcinogenesis. The aim of this review is to discuss our current knowledge on the genetic risk factors associated with the development of EC in different populations; it addresses mainly the topics of genetic polymorphisms, gene-environment interactions, and carcinogenesis. We have reviewed the published data on genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and discuss some of the potential gene-environment interactions underlying esophageal carcinogenesis. The main enzymes discussed in this review are the glutathione S-transferases (GSTs), N-acetyltransferases (NATs), cytochrome P450s (CYPs), sulfotransferases (SULTs), UDP-glucuronosyltransferases (UGTs), and epoxide hydrolases (EHs), all of which have key roles in the detoxification of environmental and dietary carcinogens. Finally, we discuss recent advances in the study of genetic polymorphisms associated with EC risk, specifically with regard to genome-wide association studies, and examine possible challenges of case-control studies that need to be addressed to better understand the interaction between genetic and environmental factors in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Marco Matejcic
- a International Centre for Genetic Engineering and Biotechnology, Cape Town Component , Observatory , Cape Town , South Africa , and
| | | |
Collapse
|
28
|
Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem Int 2015; 82:10-8. [PMID: 25661512 DOI: 10.1016/j.neuint.2015.01.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 02/08/2023]
Abstract
There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Mario Lo Bello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
29
|
Chen SH, Wu WJ, Tu HP, Li WM, Huang CN, Li CC, Lin HH, Ke HL. Glutathione S-transferase expression in upper urinary tract urothelial carcinomas: a Taiwan study. Asian Pac J Cancer Prev 2015; 14:6475-9. [PMID: 24377553 DOI: 10.7314/apjcp.2013.14.11.6475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Glutathione S-transferase (GST) isoenzymes play important roles in resistance to cell apoptosis and carcinogenesis. We aimed to establish the relationship between GST expression and the prognosis of upper urinary tract urothelial carcinoma (UTT-UC) in Taiwan. METHODS This study retrospectively reviewed 46 patients with pathologically confirmed UUT-UC at Kaohsiung Medical University Hospital. In each patient, expression of GSTT1 and GSTP1 was compared between urothelial carcinoma and normal urothelial cells by Western blotting. RESULTS GSTP1 expression in the UUT-UC cells was significantly higher than that in normal urothelial cells (1.6 fold, p<0.001). Expression of GSTT1 was significantly associated with the invasiveness of the carcinoma (p=0.006). CONCLUSIONS In UUT-UC, GSTP1 might be a potential tumor marker, whereas high GSTT1 expression could be used as an indicator of cancer progression. This study is the first to demonstrate potential applications of different GST isoenzymes for biomolecular analysis of UUT-UCs in Taiwan.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol 2014; 5:192. [PMID: 25191271 PMCID: PMC4138524 DOI: 10.3389/fphar.2014.00192] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/26/2014] [Indexed: 12/31/2022] Open
Abstract
Glutathione transferases (GSTs) represent a widespread multigenic enzyme family able to modify a broad range of molecules. These notably include secondary metabolites and exogenous substrates often referred to as xenobiotics, usually for their detoxification, subsequent transport or export. To achieve this, these enzymes can bind non-substrate ligands (ligandin function) and/or catalyze the conjugation of glutathione onto the targeted molecules, the latter activity being exhibited by GSTs having a serine or a tyrosine as catalytic residues. Besides, other GST members possess a catalytic cysteine residue, a substitution that radically changes enzyme properties. Instead of promoting GSH-conjugation reactions, cysteine-containing GSTs (Cys-GSTs) are able to perform deglutathionylation reactions similarly to glutaredoxins but the targets are usually different since glutaredoxin substrates are mostly oxidized proteins and Cys-GST substrates are metabolites. The Cys-GSTs are found in most organisms and form several classes. While Beta and Omega GSTs and chloride intracellular channel proteins (CLICs) are not found in plants, these organisms possess microsomal ProstaGlandin E-Synthase type 2, glutathionyl hydroquinone reductases, Lambda, Iota and Hemerythrin GSTs and dehydroascorbate reductases (DHARs); the four last classes being restricted to the green lineage. In plants, whereas the role of DHARs is clearly associated to the reduction of dehydroascorbate to ascorbate, the physiological roles of other Cys-GSTs remain largely unknown. In this context, a genomic and phylogenetic analysis of Cys-GSTs in photosynthetic organisms provides an updated classification that is discussed in the light of the recent literature about the functional and structural properties of Cys-GSTs. Considering the antioxidant potencies of phenolic compounds and more generally of secondary metabolites, the connection of GSTs with secondary metabolism may be interesting from a pharmacological perspective.
Collapse
Affiliation(s)
- Pierre-Alexandre Lallement
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University Umeå, Sweden
| | - Arnaud Hecker
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| | - Nicolas Rouhier
- UMR1136, Interactions Arbres - Microorganismes, Université de Lorraine Vandoeuvre-lès-Nancy, France ; UMR1136, Interactions Arbres - Microorganismes, INRA Champenoux, France
| |
Collapse
|
31
|
Groom H, Lee M, Patil P, Josephy PD. Inhibition of human glutathione transferases by dinitronaphthalene derivatives. Arch Biochem Biophys 2014; 555-556:71-6. [DOI: 10.1016/j.abb.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
|
32
|
Electrophiles in Foods: The Current Status of Isothiocyanates and Their Chemical Biology. Biosci Biotechnol Biochem 2014; 74:242-55. [DOI: 10.1271/bbb.90731] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Quantitative proteomics analysis of altered protein expression in the placental villous tissue of early pregnancy loss using isobaric tandem mass tags. BIOMED RESEARCH INTERNATIONAL 2014; 2014:647143. [PMID: 24738066 PMCID: PMC3971554 DOI: 10.1155/2014/647143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 01/23/2023]
Abstract
Many pregnant women suffer miscarriages during early gestation, but the description of these early pregnancy losses (EPL) can be somewhat confusing because of the complexities of early development. Thus, the identification of proteins with different expression profiles related to early pregnancy loss is essential for understanding the comprehensive pathophysiological mechanism. In this study, we report a gel-free tandem mass tags- (TMT-) labeling based proteomic analysis of five placental villous tissues from patients with early pregnancy loss and five from normal pregnant women. The application of this method resulted in the identification of 3423 proteins and 19647 peptides among the patient group and the matched normal control group. Qualitative and quantitative proteomic analysis revealed 51 proteins to be differentially abundant between the two groups (≥1.2-fold, Student's t-test, P < 0.05). To obtain an overview of the biological functions of the proteins whose expression levels altered significantly in EPL group, gene ontology analysis was performed. We also investigated the twelve proteins with a difference over 1.5-fold using pathways analysis. Our results demonstrate that the gel-free TMT-based proteomic approach allows the quantification of differences in protein expression levels, which is useful for obtaining molecular insights into early pregnancy loss.
Collapse
|
34
|
Gui S, Li B, Zhao X, Sheng L, Hong J, Yu X, Sang X, Sun Q, Ze Y, Wang L, Hong F. Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO₂ nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8959-8968. [PMID: 23968166 DOI: 10.1021/jf402387e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor 2 (Nrf2), which regulates genes encoding many antioxidants and detoxifying enzymes. This study determined whether TiO₂ NPs activated the Nrf2 signaling pathway. Mice exhibited accumulation of reactive oxygen species and peroxidation of lipid, protein, and DNA in the kidney, coupled with renal dysfunction, glutathione depletion, inflammatory cell infiltration, fatty degeneration, and apoptosis. These were associated with increased expression of NOX4, cyclooxygenase-2, and nuclear factor-κB. Oxidative stress and inflammation were accompanied by decreased expression of Nrf2 and down-regulation of its target gene products including heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutathione S-transferase. Chronic TiO₂ NP exposure is associated with suppression of Nrf2, which contributes to the pathogenesis of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Suxin Gui
- Medical College of Soochow University , Suzhou 215123, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Isgor BS, Isgor YG, Ozalp-Yaman S. The role of metal coordination complexes in cytosolic cellular defense. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-06-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The metal coordination complexes are known to induce cytotoxic effects on various cell lines and shown to have great potential for therapeutic interventions. Their main mechanism of action is through the mediation of enzyme activities in signaling pathways essential for cellular functioning. The overall cellular responses are dose-dependent and require high exposure levels and duration to overcome cellular defense against external toxicants. However, their effect through signal transduction components is limited due to the conferred drug resistance associated with glutathione transferase (GST)-mediated mechanisms. The GST family of enzymes is not only related to anticancer drug resistance, but also associated with cancer development where they may also contribute kinase signaling events including non-receptor protein tyrosine kinase (PTK)-related pathways. In the current study, we evaluated the effect of symmetrical and mononuclear complexes of Pd(II), Pt(II), and Ni(II) with organic ligands on cytosolic targets involved in glutathione utilization, antioxidant defense, and kinase signaling by virtue of acellular in vitro analyses.
Collapse
Affiliation(s)
- Belgin S. Isgor
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| | - Yasemin G. Isgor
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| | - Seniz Ozalp-Yaman
- Chemical Engineering and Applied Chemistry Department, Incek Campus, Bldg. A2, 06836 Ankara, Turkey
| |
Collapse
|
36
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
37
|
Zhang YE, Ma HJ, Feng DD, Lai XF, Chen ZM, Xu MY, Yu QY, Zhang Z. Induction of detoxification enzymes by quercetin in the silkworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1034-1042. [PMID: 22812145 DOI: 10.1603/ec11287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Quercetin is one of the most abundant flavonoids and the defense secondary metabolites in plants. In this study, the effect of quercetin on the growth of the silkworm larvae was investigated. Cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and carboxylesterases (COE) were assayed after exposure to different concentrations of quercetin for 3 d (short-term) and 7 d (long-term), respectively. The results showed that the weight gain of the silkworm larvae significantly decreased after the larvae were treated by different concentrations of quercetin except for the treatment with 0.5% quercetin. Activities of P450, GST, and COE were induced by 0.5 or 1% concentration of quercetin. In the midgut, the induction activity of P450s was reached to the highest level (2.3-fold) by 1% quercetin for 7 d, the highest induction activities of GSTs toward CHP and CDNB were 4.1-fold and 2.6-fold of controls by 1% quercetin after 7 d exposure, respectively. For COEs, the highest activity (2.3-fold) was induced by 0.5% quercetin for 7 d. However, P450s in whole body were higher inducible activities in short-term treatment than those in long-term treatment. The responses of eight cytochrome P450 (CYP) genes belonged to CYP6 and CYP9 families and seven GST genes were detected with real-time polymerase chain reaction. In addition, the genes induced by quercetin significantly were confirmed by qRT-PCR. CYP6AB5, CYP6B29, and GSTe8 were identified as inducible genes, of which the highest induction levels were 10.9-fold (0.5% quercetin for 7 d), 6.2-fold (1% quercetin for 7 d), and 7.1-fold (1% quercetin for 7 d), respectively.
Collapse
Affiliation(s)
- Yue-E Zhang
- The Institute of Agricultural and Life Sciences, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Northcott CA, Glenn JP, Shade RE, Kammerer CM, Hinojosa-Laborde C, Fink GD, Haywood JR, Cox LA. A custom rat and baboon hypertension gene array to compare experimental models. Exp Biol Med (Maywood) 2012; 237:99-110. [PMID: 22228705 DOI: 10.1258/ebm.2011.011188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One challenge in understanding the polygenic disease of hypertension is elucidating the genes involved and defining responses to environmental factors. Many studies focus on animal models of hypertension; however, this does not necessarily extrapolate to humans. Current technology and cost limitations are prohibitive in fully evaluating hypertension within humans. Thus, we have designed a single-array platform that allows direct comparison of genes relevant to hypertension in animal models and non-human primates/human hypertension. The custom array is targeted to 328 genes known to be potentially related to blood pressure control. Studies compared gene expression in the kidney from normotensive rats and baboons. We found 74 genes expressed in both the rat and baboon kidney, 41 genes expressed in the rat kidney that were not detected in the baboon kidney and 34 genes expressed in the baboon kidney that were not detected in the rat kidney. To begin the evaluation of the array in a pathological condition, kidney gene expression was compared between the salt-sensitive deoxycorticosterone acetate (DOCA) rat model of hypertension and sham animals. Gene expression in the renal cortex and medulla from hypertensive DOCA compared with sham rats revealed three genes differentially expressed in the renal cortex: annexin A1 (up-regulated; relative intensity: 1.316 ± 0.321 versus 2.312 ± 0.283), glutamate-cysteine ligase (down-regulated; relative intensity: 3.738 ± 0.174 versus 2.645 ± 0.364) and glutathione-S transferase (down-regulated; relative intensity: 5.572 ± 0.246 versus 4.215 ± 0.411) and 21 genes differentially expressed in the renal medulla. Interestingly, few genes were differentially expressed in the kidney in the DOCA-salt model of hypertension; this may suggest that the complexity of hypertension may be the result of only a few gene-by-environment responsive events.
Collapse
Affiliation(s)
- Carrie A Northcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ahmad ST, Arjumand W, Seth A, Kumar Saini A, Sultana S. Impact of glutathione transferase M1, T1, and P1 gene polymorphisms in the genetic susceptibility of North Indian population to renal cell carcinoma. DNA Cell Biol 2011; 31:636-43. [PMID: 22054067 DOI: 10.1089/dna.2011.1392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the association of GSTP1, GSTM1, and GSTP1 genetic variants with renal cell carcinoma (RCC) among North Indian patients. The difference in frequency of the GSTT1 null genotype between cases and control subjects was statistically significant (active ver. null, odds ratio [OR]=0.368; confidence intervals [CI] 95%=0.243-0.557, p=0.001). The differences in the frequency of GSTP1 genotypes were statistically significant (AA ver. AG/GG, OR=1.879; CI 95%=0.355-0.797, p=0.002). Higher allelic frequency of the GSTP1 G allele was associated with RCC cases (G ver. A allele, OR=1.534; 95% CI=1.159-2.030, p=0.003). The gene-gene interaction in terms of three-way combination of GSTM1 null, GSTT1 null, and GSTP1 (AG/GG) resulted in 4.5-fold increase in RCC risk (OR=4.452; 95% CI=2.220-9.294). Similarly, our study revealed that GST polymorphism might be a vital determinant of advancement to higher pathological stages and histological grades of RCC. Our findings suggest that genetic variability in members of the GST gene family may be associated with an increased susceptibility to RCC and its progression.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Miene C, Weise A, Glei M. Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97). Nutr Cancer 2011; 63:653-62. [PMID: 21598179 DOI: 10.1080/01635581.2011.552157] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyphenols may play an important role in colon cancer prevention. After entering the colon, they are subjected to metabolism by the human gut microbiota. The objective of the present study was to analyze the impact of selected intestinal metabolites on modulation of enzymes involved in detoxification and inflammation in human adenoma cells LT97. LT97 cells were incubated with 3,4-dihydroxyphenylacetic acid (ES) and 3-(3,4-dihydroxyphenyl)-propionic acid (PS), metabolites of quercetin and chlorogenic acid/caffeic acid, respectively. The effect on cell number was analyzed using 4'- 6-diamino-2-phenylindole-dihydrochloride (DAPI)-staining. Modulation of glutathione S-transferase T2 (GSTT2) and cyclooxygenase-2 (COX-2) was measured by real-time PCR and Western blot. Comet assay was performed to assess the impact on DNA damage caused by the GSTT2 substrate cumene hydroperoxide (CumOOH). Polyphenol metabolites did not affect cell number but significantly upregulated GSTT2 expression and decreased COX-2. The latter was confirmed via Western blot. CumOOH-induced DNA damage was significantly reduced compared to the control. An upregulation of GSTT2 and downregulation of COX-2 could possibly contribute to the chemopreventive potential of polyphenols after degradation in the gut. Working with polyphenol metabolites is an important prerequisite to better understand the in vivo effects of pure polyphenols.
Collapse
Affiliation(s)
- Claudia Miene
- Institute for Nutrition, Department of Nutritional Toxicology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | |
Collapse
|
41
|
Van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 2011; 51:337-51. [PMID: 21620959 DOI: 10.1016/j.freeradbiomed.2011.05.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/24/2011] [Accepted: 05/07/2011] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is a neglected tropical disease that affects about 350 million individuals worldwide. The protozoan parasite has a relatively simple life cycle with two principal stages: the flagellated mobile promastigote living in the gut of the sandfly vector and the intracellular amastigote within phagolysosomal vesicles of the vertebrate host macrophage. This review presents a state-of-the-art overview of the redox biology at the parasite-macrophage interface. Although Leishmania species are susceptible in vitro to exogenous superoxide radical, hydrogen peroxide, nitric oxide, and peroxynitrite, they manage to survive the endogenous oxidative burst during phagocytosis and the subsequent elevated nitric oxide production in the macrophage. The parasite adopts various defense mechanisms to cope with oxidative stress: the lipophosphoglycan membrane decreases superoxide radical production by inhibiting NADPH oxidase assembly and the parasite also protects itself by expressing antioxidant enzymes and proteins. Some of these enzymes could be considered potential drug targets because they are not expressed in mammals. In respect to antileishmanial therapy, the effects of current drugs on parasite-macrophage redox biology and its involvement in the development of drug resistance and treatment failure are presented.
Collapse
Affiliation(s)
- Tim Van Assche
- Laboratory of Microbiology Parasitology, and Hygiene, University of Antwerp, B-2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
42
|
Miene C, Weise A, Glei M. Impact of Polyphenol Metabolites Produced by Colonic Microbiota on Expression of COX-2 and GSTT2 in Human Colon Cells (LT97). Nutr Cancer 2011. [DOI: 10.1080/01635581.2011.552157 pmid: 21598179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Claudia Miene
- a Institute for Nutrition, Department of Nutritional Toxicology , Friedrich-Schiller-University Jena , Jena, Germany
| | - Anja Weise
- b Institute of Human Genetics and Anthropology , Friedrich-Schiller-University Jena , Jena, Germany
| | - Michael Glei
- a Institute for Nutrition, Department of Nutritional Toxicology , Friedrich-Schiller-University Jena , Jena, Germany
| |
Collapse
|
43
|
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011; 85:241-72. [PMID: 21365312 DOI: 10.1007/s00204-011-0674-5] [Citation(s) in RCA: 775] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/08/2011] [Indexed: 12/11/2022]
Abstract
An elaborate network of highly inducible proteins protects aerobic cells against the cumulative damaging effects of reactive oxygen intermediates and toxic electrophiles, which are the major causes of neoplastic and chronic degenerative diseases. These cytoprotective proteins share common transcriptional regulation, through the Keap1-Nrf2 pathway, which can be activated by various exogenous and endogenous small molecules (inducers). Inducers chemically react with critical cysteine residues of the sensor protein Keap1, leading to stabilisation and nuclear translocation of transcription factor Nrf2, and ultimately to coordinate enhanced expression of genes coding for cytoprotective proteins. In addition, inducers inhibit pro-inflammatory responses, and there is a linear correlation spanning more than six orders of magnitude of concentrations between inducer and anti-inflammatory activity. Genetic deletion of transcription factor Nrf2 renders cells and animals much more sensitive to the damaging effects of electrophiles, oxidants and inflammatory agents in comparison with their wild-type counterparts. Conversely, activation of the Keap1-Nrf2 pathway allows survival and adaptation under various conditions of stress and has protective effects in many animal models. Cross-talks with other signalling pathways broadens the role of the Keap1-Nrf2 pathway in determining the fate of the cell, impacting fundamental biological processes such as proliferation, apoptosis, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Liam Baird
- Biomedical Research Institute, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
44
|
Abstract
Glutathione transferase (GST) kappa, also named mitochondrial GST, is a very ancient protein family with orthologs in bacteria and eukaryotes. Both the structure and the subcellular localization of GSTK1-1, in mitochondria and peroxisomes, make this enzyme distinct from cytosolic GSTs. Rodent and human GSTK1 exhibit activity towards a number of model GST substrates and, in Caenorhabditis elegans, this enzyme may be involved in energy and lipid metabolism, two functions related to mitochondria and peroxisomes. Interestingly, GST kappa is also a key regulator of adiponectin biosynthesis and multimerization suggesting that it might function as a chaperone to facilitate correct folding and assembly of proteins. Since adiponectin expression has been correlated with insulin resistance, obesity and diabetes, GSTK1 expression level which is negatively correlated with obesity in mice and human adipose tissues may be an important factor in these metabolic disorders. Furthermore, a polymorphism in the hGSTK1 promoter has been associated with insulin secretion and fat deposition.
Collapse
Affiliation(s)
- Fabrice Morel
- INSERM UMR991, Université de Rennes 1, F-35033 Rennes, France.
| | | |
Collapse
|
45
|
Yu QY, Fang SM, Zuo WD, Dai FY, Zhang Z, Lu C. Effect of organophosphate phoxim exposure on certain oxidative stress biomarkers in the silkworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:101-106. [PMID: 21404846 DOI: 10.1603/ec10260] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Organophosphorus (OP) insecticides are widely used in agriculture, which are toxic to insect pests and nontarget organisms. The current study mainly assessed the effect of the pesticide phoxim on oxidative stress by certain biomarkers in the fat body and midgut of the silkworm, Bombyx mori (L.), after exposure to 50% lethal concentration (LC50) of phoxim for 2 h. Malondialdehyde (MDA) content, activity of glutathione transferase (GST), and expression of GST at transcriptional level were assayed. LC50 value of phoxim was 2.5 mg/liter at 2-h exposure for the day 3 of the fifth-instar larvae. After exposure of phoxim, MDA content in the fat body significantly increased at 4-20 h posttreatment (p.t.),the highest increase was approximately 4.11-fold from 0.451 +/- 0.053 to 1.854 +/- 0.113 nmol/mg protein compared with corresponding control. In the midgut, significant increase in the MDA content (from 1.40- to 3.16-fold) was observed at 8-42 h p.t. The activity of GSTs increased to 1.48-2.00-fold at 24-42 h p.t. and 1.33-1.48-fold at 20-24 h p.t. in the fat body and midgut, respectively. The peroxidase activity of GSTs also was induced, which increased to 1.46-2.06-fold and 1.31-1.50-fold in the fat body and midgut, respectively. BmGSTe8 showed a late up-regulation of transcripts at 24-42 h after exposure to phoxim, which might contribute to the improved phoxim tolerance of silkworm larvae. These results indicated that phoxim could trigger oxidative stress and that MDA content and GST activity might be used as biomarkers of OP insecticide exposure. In addition, activity of GSTs were more inducible in the fat body than in midgut.
Collapse
Affiliation(s)
- Quan-You Yu
- The Key Sericultural Laboratory of the Agricultural Ministry of China, Southwest University, Chongqing 400716, China
| | | | | | | | | | | |
Collapse
|
46
|
Fabrini R, Bocedi A, Pallottini V, Canuti L, De Canio M, Urbani A, Marzano V, Cornetta T, Stano P, Giovanetti A, Stella L, Canini A, Federici G, Ricci G. Nuclear shield: a multi-enzyme task-force for nucleus protection. PLoS One 2010; 5:e14125. [PMID: 21170318 PMCID: PMC3000810 DOI: 10.1371/journal.pone.0014125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/01/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. METHODOLOGY/PRINCIPAL FINDINGS Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain), and that behaves as a "nuclear shield". In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. CONCLUSIONS/SIGNIFICANCE The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and accumulation of protection enzymes near sensitive targets represents a new safeguard modality which deeply differs from the adaptive response which is based on expression of specific enzymes.
Collapse
Affiliation(s)
- Raffaele Fabrini
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| | - Alessio Bocedi
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | | | - Lorena Canuti
- Department of Biology, University of Rome Tor Vergata, Rome,
Italy
| | - Michele De Canio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
- S. Lucia Research Institute IRCCS, Rome, Italy
| | - Valeria Marzano
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
- S. Lucia Research Institute IRCCS, Rome, Italy
| | | | - Pasquale Stano
- Department of Biology, University of Roma Tre, Rome, Italy
| | - Anna Giovanetti
- Institute of Radiation Protection, ENEA-CR Casaccia, Rome,
Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome,
Italy
| | - Giorgio Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| |
Collapse
|
47
|
Rahmanto AS, Morgan PE, Hawkins CL, Davies MJ. Cellular effects of photogenerated oxidants and long-lived, reactive, hydroperoxide photoproducts. Free Radic Biol Med 2010; 49:1505-15. [PMID: 20708682 DOI: 10.1016/j.freeradbiomed.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Reaction of radicals and singlet oxygen ((1)O(2)) with proteins results in both direct damage and the formation of long-lived reactive hydroperoxides. Elevated levels of protein hydroperoxide-derived products have been detected in multiple human pathologies, suggesting that these secondary oxidants contribute to tissue damage. Previous studies have provided evidence for protein hydroperoxide-mediated inhibition of thiol-dependent enzymes and modulation of signaling processes in isolated systems. In this study (1)O(2) and hydroperoxides have been generated in J774A.1 macrophage-like cells using visible light and the photosensitizer rose bengal, with the consequences of oxidant formation examined both immediately and after subsequent (dark-phase) incubation. Significant losses of GSH (≤50%), total thiols (≤20%), and activity of thiol-dependent proteins (GAPDH, thioredoxin, protein tyrosine phosphatases, creatine kinase, and cathepsins B and L; 10-50% inhibition) were detected after 1 or 2 min photo-oxidation. Non-thiol-dependent enzymes were not affected. In contrast, NADPH levels increased, together with the activity of glutathione reductase, glutathione peroxidase, and thioredoxin reductase; these increases may be components of a rapid global cytoprotective cellular response to stress. Neither oxidized thioredoxin nor radical-mediated protein oxidation products were detected at significant levels. Further decreases in thiol levels and enzyme activity occurred during dark-phase incubation, with this accompanied by decreased cell viability. These secondary events are ascribed to the reactions of long-lived hydroperoxides, generated by (1)O(2)-mediated reactions. Overall, this study provides novel insights into early cellular responses to photo-oxidative damage and indicates that long-lived hydroperoxides can play a significant role in cellular damage.
Collapse
|
48
|
Ojaimi C, Kinugawa S, Recchia FA, Hintze TH. Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 2010; 9:43. [PMID: 20735837 PMCID: PMC2936363 DOI: 10.1186/1475-2840-9-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022] Open
Abstract
Background The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: 1) baseline coronary blood flow (CBF) was significantly decreased, 2) endothelium-dependent (ACh) coronary vasodilation was impaired, and 3) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes. Methods Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4). Results The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca2+ cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated. Conclusion our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.
Collapse
Affiliation(s)
- Caroline Ojaimi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
49
|
Matic M, Simic T, Dragicevic D, Mimic-Oka J, Pljesa-Ercegovac M, Savic-Radojevic A. Isoenzyme profile of glutathione transferases in transitional cell carcinoma of upper urinary tract. Transl Res 2010; 155:256-62. [PMID: 20403581 DOI: 10.1016/j.trsl.2009.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/16/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
Abstract
Upregulated glutathione S-transferase P1 (GSTP1) plays an important role in the resistance to apoptosis in transitional cell carcinoma (TCC) of the urinary bladder (UB) and represents a potential target for chemotherapeutic agents. Our aim was to perform a systematic investigation of a glutathione S-transferase (GST) isoenzyme profile (GSTM, GSTP1, and GSTT1) in the upper urinary tract (UUT) TCC and compare it with the GST isoenzyme pattern of the UB TCC and normal urothelium. We examined GST activity spectrophotometrically by using substrates for the overall GST activity, GSTP1, and GSTT1 in the cytosolic fraction. GSTP1 and GSTM expression was analyzed by Western blotting. The results obtained have shown that the overall GST activity was significantly higher in UUT TCC in comparison with urothelium (P<0.001), which gradually increases with tumor grade (P<0.05). The mean GSTP1 and GSTT1 activities in UUT TCC were 2- and 3.6-fold higher, respectively, than in the normal urothelium (P<0.001), and these values did not differ significantly from activities found in the UB TCC. GSTM was expressed in 42% of the UUT TCC and 50% of the UB TCC specimens. The level of GSTM expression was slightly increased in the UUT TCC specimens in comparison with normal urothelium (P>0.05). We conclude that 3 major cytosolic GST classes, GSTM, GSTP1, and GSTT1, are expressed in the UUT TCC. The isoenzyme profile of GST in the UUT TCC is similar to that observed in the UB TCC; it shows essentially the same alteration of the GST phenotype in the course of cancerization. The association of GSTT1 and GSTP1 upregulation with the malignant phenotype of the UUT TCC might result in resistances to both chemotherapy and apoptosis.
Collapse
Affiliation(s)
- Marija Matic
- Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
50
|
Yao HT, Lii CK, Chou RH, Lin JH, Yang HT, Chiang MT. Effect of chitosan on hepatic drug-metabolizing enzymes and oxidative stress in rats fed low- and high-fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5187-5193. [PMID: 20334365 DOI: 10.1021/jf903857m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is sold worldwide as a lipid-lowering functional food and may be taken with certain medications. To investigate the effect of chitosan on drug-metabolizing enzymes and oxidative stress in the liver, male Wistar rats were fed a low- or high-fat diet with cellulose or chitosan for 4 weeks. A significant decrease in cytochrome P450 (CYP) 3A-catalyzed testosterone 6beta-hydroxylation in liver microsomes was observed in rats fed the chitosan with low- and high-fat diets. The expression of CYP 3A1 and 3A2, however, was suppressed by chitosan in rats fed the low-fat diet only. Furthermore, rats fed the low-fat diet with chitosan had lower hepatic glutathione S-transferase (GST) activity and superoxide dismutase activity and higher total tissue and microsomal lipid hydroperoxides. Hepatic alpha-tocopherol was lower in rats fed the chitosan-containing diet. The results suggest that chitosan is likely to modulate CYP 3A activity and protein expression and GST activity partially in a dietary fat-dependent manner. This change may cause a decrease in the metabolism of drugs catalyzed by these enzymes in liver tissues. Moreover, decrease of alpha-tocopherol level and SOD activity by chitosan partly accounts for the increase of hepatic lipid peroxidation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|