1
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
2
|
Chen X, Cai Q, Liang R, Zhang D, Liu X, Zhang M, Xiong Y, Xu M, Liu Q, Li P, Yu P, Shi A. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis 2023; 14:105. [PMID: 36774340 PMCID: PMC9922317 DOI: 10.1038/s41419-023-05639-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Xiong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
3
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
4
|
Sarkhosh-Khorasani S, Sangsefidi ZS, Hosseinzadeh M. The effect of grape products containing polyphenols on oxidative stress: a systematic review and meta-analysis of randomized clinical trials. Nutr J 2021; 20:25. [PMID: 33712024 PMCID: PMC7971097 DOI: 10.1186/s12937-021-00686-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The literature showed that Grape Products Containing Polyphenols (GPCP) had anti-oxidant activity. However, the effects of GPCP on different biomarkers of oxidative stress are still controversial. In this regard, this systematic review and meta-analysis aimed to evaluate the effect of Grape Products Containing Polyphenols (GPCP) intake on oxidative stress markers. METHODS PubMed, Scopus, Web of Science, and Google Scholar data bases were searched up to August 20, 2020. A random-effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were applied for data analysis. Meta-analysis was conducted over 17 eligible RCTs with a total of 633 participants. The study registration number is CRD42019116696. RESULTS A significant increase was observed in Total Antioxidant Capacity (TAC) (weighted mean difference (WMD) = 1.524 mmol/L, 95% confidence interval (CI): 0.83, 2.21). Intake of GPCP enhanced Superoxide Dismutase (SOD) (WMD = 0.450 mmol/L, 95% CI: 0.23, 0.66), TAC (WMD = 2.829 mmol/L, 95% CI: 0.13, 5.52), and Oxygen Radical Absorbance Capacity (ORAC) (WMD = 0.524 μmol/L, 95% CI: 0.42, 0.62) among healthy participants. Higher GPCP doses increased SOD (WMD = 0.539 U/mgHb, 95% CI: 0.24, 0.82) and ORAC (WMD = 0.377 μmol/L, 95% CI: 0.08, 0.67), whereas longer intervention periods enhanced ORAC (WMD = 0.543 μmol/L, 95% CI: 0.43, 0.64). CONCLUSION GPCP intake may partly improve status of oxidative stress, but further well-designed trials are required to confirm these results.
Collapse
Affiliation(s)
- Sahar Sarkhosh-Khorasani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohreh Sadat Sangsefidi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Shukla H, Lee HY, Koucheki A, Bibi HA, Gaje G, Sun X, Zhu H, Li YR, Jia Z. Targeting glutathione with the triterpenoid CDDO-Im protects against benzo-a-pyrene-1,6-quinone-induced cytotoxicity in endothelial cells. Mol Cell Biochem 2020; 474:27-39. [PMID: 32715408 DOI: 10.1007/s11010-020-03831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have exhibited a strong correlation between exposure to air pollution and deaths due to vascular diseases such as atherosclerosis. Benzo-a-pyrene-1,6-quinone (BP-1,6-Q) is one of the components of air pollution. This study was to examine the role of GSH in BP-1,6-Q mediated cytotoxicity in human EA.hy96 endothelial cells and demonstrated that induction of cellular glutathione by a potent triterpenoid, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole), protects cells against BP-1,6-Q induced protein and lipid damage. Incubation of EA.hy926 endothelial cells with BP-1,6-Q caused a significant increase in dose-dependent cytotoxicity as measured by LDH release assay and both apoptotic and necrotic cell deaths as measured by flow cytometric analysis. Incubation of EA.hy926 endothelial cells with BP-1,6-Q also caused a significant decrease in cellular GSH levels. The diminishment of cellular GSH by buthionine sulfoximine (BSO) potentiated BP-1,6-Q-induced toxicity significantly suggesting a critical involvement of GSH in BP-1,6-Q induced cellular toxicity. GSH-induction by CDDO-Im significantly protects cells against BP-1,6-Q induced protein and lipid damage as measured by protein carbonyl (PC) assay and thiobarbituric acid reactive substances (TBARS) assay, respectively. However, the co-treatment of cells with CDDO-Im and BSO reversed the cytoprotective effect of CDDO-Im on BP-1,6-Q-mediated lipid peroxidation and protein oxidation. These results suggest that induction of GSH by CDDO-Im might be the important cellular defense against BP-1,6-Q induced protein and lipid damage. These findings would contribute to better understand the action of BP-1,6-Q and may help to develop novel therapies to protect against BP-1,6-Q-induced atherogenesis.
Collapse
Affiliation(s)
- Halley Shukla
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ho Young Lee
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ashkon Koucheki
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Humaira A Bibi
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Gabriella Gaje
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
6
|
Li Z, Huang S, He Y, Duan Q, Zheng G, Jiang Y, Cai L, Jia Y, Zhang H, Ho D. AND logic gate based fluorescence probe for simultaneous detection of peroxynitrite and hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118073. [PMID: 31978691 DOI: 10.1016/j.saa.2020.118073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Hypochlorous acid (HOCl) and peroxynitrite (ONOO-) are two of the most important reactive species and associated with various diseases in various physiological and pathological processes. Nonetheless, many of their roles are still vague due to the shortage of methods for simultaneously detecting HOCl and ONOO-. Herein, three simple yet useful fluorogenic probes, LG-1, LG-2 and LG-3, have been fabricated with facile synthesis route and used to monitor the coexistence of HOCl and ONOO- as AND-based logic gate fluorescent probe firstly. LG-1 and LG-2, which consists of 1,3-oxathiolane group and boronate group respectively, were designed to verify the capacity of monitoring HOCl and ONOO- without interference from each other. The result showed that these two groups are perfect reaction sites of detecting HOCl and ONOO- respectively via specific analyte-induced reactions. Hence, LG-3, which is attached by these two groups to suppress the fluorophore core, can response to HOCl and ONOO- simultaneously without mutual interference and generate the significant time-dependent fluorescence enhancement. By investigating the absorption and fluorescence properties of LG-3 towards HOCl and ONOO- individually and collectively, the result confirmed clearly that LG-3 has the capacity of monitoring the coexistence of HOCl and ONOO-, which could act as a two-input AND-based logic gate fluorescent probe.
Collapse
Affiliation(s)
- Zejun Li
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shumei Huang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yong He
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qinya Duan
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yin Jiang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lili Cai
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yongguang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep 2020; 10:666. [PMID: 31959784 PMCID: PMC6971288 DOI: 10.1038/s41598-019-57299-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The extracellular matrix (ECM) of tissues is susceptible to modification by inflammation-associated oxidants. Considerable data support a role for hypochlorous acid (HOCl), generated by the leukocyte-derived heme-protein myeloperoxidase (MPO) in these changes. HOCl can modify isolated ECM proteins and cell-derived matrix, with this resulting in decreased cell adhesion, modulated proliferation and gene expression, and phenotypic changes. Whether this arises from free HOCl, or via site-specific reactions is unresolved. Here we examine the mechanisms of MPO-mediated changes to human coronary smooth muscle cell ECM. MPO is shown to co-localize with matrix fibronectin as detected by confocal microscopy, and bound active MPO can initiate ECM modification, as detected by decreased antibody recognition of fibronectin, versican and type IV collagen, and formation of protein carbonyls and HOCl-mediated damage. These changes are recapitulated by a glucose/glucose oxidase/MPO system where low continuous fluxes of H2O2 are generated. HOCl-induced modifications enhance MPO binding to ECM proteins as detected by ELISA and MPO activity measurements. These data demonstrate that MPO-generated HOCl induces ECM modification by interacting with ECM proteins in a site-specific manner, and generates alterations that increase MPO adhesion. This is proposed to give rise to an increasing cycle of alterations that contribute to tissue damage.
Collapse
|
8
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
9
|
Surendran A, Zhang H, Winter T, Edel A, Aukema H, Ravandi A. Oxylipin profile of human low-density lipoprotein is dependent on its extent of oxidation. Atherosclerosis 2019; 288:101-111. [DOI: 10.1016/j.atherosclerosis.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
|
10
|
Nanotherapies for Treatment of Cardiovascular Disease: A Case for Antioxidant Targeted Delivery. CURRENT PATHOBIOLOGY REPORTS 2019; 7:47-60. [PMID: 31396435 DOI: 10.1007/s40139-019-00196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Cardiovascular disease (CVD) involves a broad range of clinical manifestations resulting from a dysfunctional vascular system. Overproduction of reactive oxygen and nitrogen species are causally implicated in the severity of vascular dysfunction and CVD. Antioxidant therapy is an attractive avenue for treatment of CVD associated pathologies. Implementation of targeted nano-antioxidant therapies has the potential to overcome hurdles associated with systemic delivery of antioxidants. This review examines the currently available options for nanotherapeutic targeting CVD, and explores successful studies showcasing targeted nano-antioxidant therapy. Recent Findings Active targeting strategies in the context of CVD heavily focus on immunotargeting to inflammatory markers like cell adhesion molecules, or to exposed extracellular matrix components. Targeted antioxidant nanotherapies have found success in pre-clinical studies. Summary This review underscores the potential of targeted nanocarriers as means of finding success translating antioxidant therapies to the clinic, all with a focus on CVD.
Collapse
|
11
|
A novel NIR-emissive probe with large Stokes shift for hypochlorite detection and imaging in living cells. Talanta 2019; 196:352-356. [DOI: 10.1016/j.talanta.2018.12.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/14/2018] [Accepted: 12/25/2018] [Indexed: 11/19/2022]
|
12
|
Cai H, Chuang CY, Vanichkitrungruang S, Hawkins CL, Davies MJ. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radic Biol Med 2019; 134:516-526. [PMID: 30716431 DOI: 10.1016/j.freeradbiomed.2019.01.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023]
Abstract
The extracellular matrix (ECM) influences the structure and function of the arterial wall and modulates the behavior of vascular cells through ECM-cell interactions. Alterations to the ECM have been implicated in multiple pathological processes, including atherosclerosis which is characterized by low-grade chronic inflammation and the infiltration and proliferation of smooth muscle cells during disease development. Considerable evidence has been presented for a role for inflammation-derived oxidation in atherogenesis, with enzymatically-active myeloperoxidase (MPO), elevated levels of 3-chlorotyrosine (a biomarker of MPO-catalyzed damage) and oxidized ECM materials detected in advanced human atherosclerotic lesions. Whether oxidant-modified ECM contributes to the altered behavior of smooth muscle cells is however unclear. This study therefore investigated the effects of hypochlorous acid (HOCl), a major MPO-derived oxidant, on the structure of the native ECM synthesized by human coronary artery smooth muscle cells (HCAMSCs) and whether modified ECM proteins affected HCASMC adhesion, proliferation and gene expression. Exposure of native HCASMC-derived ECM to reagent HOCl or a MPO-Cl--H2O2 system resulted in extensive ECM modifications as evidenced by the loss of antibody recognition of epitopes on type IV collagen, laminin, versican and fibronectin. Oxidation of HCASMC ECM markedly reduced HCASMC adhesion to matrix components, but facilitated subsequent proliferation in vitro. Multiple genes were upregulated in HCASMCs in response to HOCl-modified HCASMC-ECM including interleukin-6 (IL-6), fibronectin (FN1) and matrix-metalloproteinases (MMPs). These data reveal a mechanism through which inflammation-induced ECM-modification may contribute to the behavioral switching of HCASMCs, a key process in plaque formation during the development of atherosclerosis.
Collapse
Affiliation(s)
- Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Siriluck Vanichkitrungruang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Wang Q, Jin L, Wang W, Dai L, Tan X, Zhao C. Two coumarin-based turn-on fluorescent probes based on for hypochlorous acid detection and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:239-245. [PMID: 30553147 DOI: 10.1016/j.saa.2018.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
This work, two turn-on fluorescent probes (3-acetyl-2H-chromen-2-one (ACO) & (1E)-1-(1-(2-oxo-2H-chromen-3-yl)ethylidene)thiosemicarbazide (CETC)) based on coumarin have been designed and synthesized, which could selectively and sensitively recognize ClO- with fast response time. ACO &CETC were almost non fluorescent possibly due to both the lacton form of coumarin and unbridged CN bonds which can undergo a nonradiative decay process in the excited state. Upon the addition of ClO-, ACO &CETC were oxidized to ring - opened by cleavage the CO and CN and the fluorescence intensity were increased considerably. Fluorescence titration experiments showed that the detection limit ACO &CETC is as low as 22 nm and 51 nm respectively. In particular, some relevant reactive species, including OH, 1O2, H2O2, KO2, some anions and cations cannot be interference with the test. In live cell experiments, ACO &CETC were successfully applied to image exogenous ClO- in HepG2 cells. Therefore, ACO &CETC not only could image ClO- in living cells but also proved that CO and CN can be cleavage by ClO-.
Collapse
Affiliation(s)
- Qingming Wang
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China.
| | - Lei Jin
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People's Republic of China
| | - Wenling Wang
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China
| | - Lihui Dai
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China
| | - Xiaoxue Tan
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China
| | - Cong Zhao
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China
| |
Collapse
|
14
|
Duan Q, Zheng G, Li Z, Cheng K, Zhang J, Yang L, Jiang Y, Zhang H, He J, Sun H. An ultra-sensitive ratiometric fluorescent probe for hypochlorous acid detection by the synergistic effect of AIE and TBET and its application of detecting exogenous/endogenous HOCl in living cells. J Mater Chem B 2019; 7:5125-5131. [DOI: 10.1039/c9tb01279f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TR-OClexhibits ultra-high sensitivity towards HOCl with a 7000-fold enhancement in the fluorescence ratio (I589/I477) and a detection limit of 1.29 nM, which is one of the highest recorded so far.
Collapse
Affiliation(s)
- Qinya Duan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Zejun Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Ke Cheng
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Jie Zhang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| | - Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF)
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| |
Collapse
|
15
|
Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biol 2018; 20:496-513. [PMID: 30476874 PMCID: PMC6260226 DOI: 10.1016/j.redox.2018.10.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Basement membranes are specialized extracellular matrices that underlie arterial wall endothelial cells, with laminin being a key structural and biologically-active component. Hypochlorous acid (HOCl), a potent oxidizing and chlorinating agent, is formed in vivo at sites of inflammation via the enzymatic action of myeloperoxidase (MPO), released by activated leukocytes. Considerable data supports a role for MPO-derived oxidants in cardiovascular disease and particularly atherosclerosis. These effects may be mediated via extracellular matrix damage to which MPO binds. Herein we detect and quantify sites of oxidation and chlorination on isolated laminin-111, and laminin in basement membrane extracts (BME), by use of mass spectrometry. Increased modification was detected with increasing oxidant exposure. Mass mapping indicated selectivity in the sites and extent of damage; Met residues were most heavily modified. Fewer modifications were detected with BME, possibly due to the shielding effects. HOCl oxidised 30 (of 56 total) Met and 7 (of 24) Trp residues, and chlorinated 33 (of 99) Tyr residues; 3 Tyr were dichlorinated. An additional 8 Met and 10 Trp oxidations, 14 chlorinations, and 18 dichlorinations were detected with the MPO/H2O2/Cl- system when compared to reagent HOCl. Interestingly, chlorination was detected at Tyr2415 in the integrin-binding region; this may decrease cellular adhesion. Co-localization of MPO-damaged epitopes and laminin was detected in human atherosclerotic lesions. These data indicate that laminin is extensively modified by MPO-derived oxidants, with structural and functional changes. These modifications, and compromised cell-matrix interactions, may promote endothelial cell dysfunction, weaken the structure of atherosclerotic lesions, and enhance lesion rupture.
Collapse
|
16
|
Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018; 315:C186-C201. [PMID: 29874110 DOI: 10.1152/ajpcell.00132.2018] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper (Cu) is an essential micronutrient but excess Cu is potentially toxic. Its important propensity to cycle between two oxidation states accounts for its frequent presence as a cofactor in many physiological processes through Cu-containing enzymes, including mitochondrial energy production (via cytochrome c-oxidase), protection against oxidative stress (via superoxide dismutase), and extracellular matrix stability (via lysyl oxidase). Since free Cu is potentially toxic, the bioavailability of intracellular Cu is tightly controlled by Cu transporters and Cu chaperones. Recent evidence reveals that these Cu transport systems play an essential role in the physiological responses of cardiovascular cells, including cell growth, migration, angiogenesis and wound repair. In response to growth factors, cytokines, and hypoxia, their expression, subcellular localization, and function are tightly regulated. Cu transport systems and their regulators have also been linked to various cardiovascular pathophysiologies such as hypertension, inflammation, atherosclerosis, diabetes, cardiac hypertrophy, and cardiomyopathy. A greater appreciation of the central importance of Cu transporters and Cu chaperones in cell signaling and gene expression in cardiovascular biology offers the possibility of identifying new therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
17
|
Andrzejczak O, Krasuska U, Olechowicz J, Staszek P, Ciacka K, Bogatek R, Hebelstrup K, Gniazdowska A. Destabilization of ROS metabolism in tomato roots as a phytotoxic effect of meta-tyrosine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:369-377. [PMID: 29304482 DOI: 10.1016/j.plaphy.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 05/09/2023]
Abstract
meta-Tyrosine (m-Tyr) is a non-protein amino acid produced in both plants and animals. Primary mode of action of this phenylalanine analog is its incorporation into protein structure leading to formation of aberrant molecules. An increased level of m-Tyr in animal cells is detected under oxidative stress and during age-related processes characterized by overproduction of reactive oxygen species (ROS). The aim of this study was to link m-Tyr physiological action to disturbances in ROS metabolism in tomato (Solanum lycopersicum L.) seedlings roots. Treatment of tomato seedlings with m-Tyr (50 or 250 μM) for 24-72 h led to inhibition of root growth without a lethal effect. Toxicity of m-Tyr after 72 h was connected with an increase in hydrogen peroxide concentration in roots and ROS leakage into the surrounding medium. On the contrary, membrane permeability and lipid peroxidation in roots were the same as for the control. This was accompanied by a decrease in total antioxidant activity and an increased accumulation of phenolic compounds. Catalase (CAT) activity declined in roots exposed to 50 μM m-Tyr after 24 h while after 72 h activity of this enzyme was inhibited in both treated and non-treated samples. Activities of different superoxide dismutase (SOD) isoforms were similar in m-Tyr stressed roots and in the control. Prolonged culture resulted in decrease of transcript level of genes coding CAT and SOD with the exception of FeSOD. Moreover, m-Tyr increased the level of protein carbonyl groups indicating induction of oxidative stress as a non-direct mode of action.
Collapse
Affiliation(s)
- Olga Andrzejczak
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Olechowicz
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Paweł Staszek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Katarzyna Ciacka
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Kim Hebelstrup
- Department of Molecular Biology and Genetics - Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
18
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. Free Radic Biol Med 2017; 113:132-142. [PMID: 28962874 DOI: 10.1016/j.freeradbiomed.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Free radicals are produced during physiological processes including metabolism and the immune response, as well as on exposure to multiple external stimuli. Many radicals react rapidly with proteins resulting in side-chain modification, backbone fragmentation, aggregation, and changes in structure and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp• dimerization, the rate constants for these reactions and the exact nature of the products are not fully elucidated. In this study, second-order rate constants were determined for Trp• dimerization in Trp-containing peptides to be 2-6 × 108M-1s-1 by pulse radiolysis. Peptide charge and molecular mass correlated negatively with these rate constants. Exposure of Trp-containing peptides to steady-state radiolysis in the presence of NaN3 resulted in consumption of the parent peptide, and detection by LC-MS of up to 4 different isomeric Trp-Trp cross-links. Similar species were detected with other oxidants, including CO3•- (from the HCO3- -dependent peroxidase activity of bovine superoxide dismutase) and peroxynitrous acid (ONOOH) in the presence or absence of HCO3-. Trp-Trp species were also isolated and detected after alkaline hydrolysis of the oxidized peptides and proteins. These studies demonstrate that Trp• formed on peptides and proteins undergo rapid recombination reactions to form Trp-Trp cross-linked species. These products may serve as markers of radical-mediated protein damage, and represent an additional pathway to protein aggregation in cellular dysfunction and disease.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | | | | | - Michael J Davies
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
19
|
Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 2017; 113:395-405. [PMID: 29055824 DOI: 10.1016/j.freeradbiomed.2017.10.344] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Activated white blood cells generate multiple oxidants in response to invading pathogens. Thus, hypochlorous acid (HOCl) is generated via the reaction of myeloperoxidase (from neutrophils and monocytes) with hydrogen peroxide, and peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent is formed from superoxide radicals and nitric oxide, generated by stimulated macrophages. Excessive or misplaced production of these oxidants has been linked to multiple human pathologies, including cardiovascular disease. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins and ECM generated by human coronary artery endothelial cells (HCAECs). The novel selenocompounds examined react with HOCl with k 0.2-1.0 × 108M-1s-1, and ONOOH with k 4.5-8.6 - × 105M-1s-1. Reaction with H2O2 is considerably slower (k < 0.25M-1s-1). The selenocompound 2-phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine provided protection to human serum albumin (HSA) against HOCl-mediated damage (as assessed by SDS-PAGE) and damage to isolated matrix proteins induced by ONOOH, with a concomitant decrease in the levels of the biomarker 3-nitrotyrosine. Structural damage and generation of 3-nitroTyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis.
Collapse
Affiliation(s)
- Angela M Casaril
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Beatriz Vieira
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Nathalia B Padilha
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Rykær M, Svensson B, Davies MJ, Hägglund P. Unrestricted Mass Spectrometric Data Analysis for Identification, Localization, and Quantification of Oxidative Protein Modifications. J Proteome Res 2017; 16:3978-3988. [PMID: 28920440 DOI: 10.1021/acs.jproteome.7b00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidation generates multiple diverse post-translational modifications resulting in changes in protein structure and function associated with a wide range of diseases. Of these modifications, carbonylations have often been used as hallmarks of oxidative damage. However, accumulating evidence supports the hypothesis that other oxidation products may be quantitatively more important under physiological conditions. To address this issue, we have developed a holistic mass spectrometry-based approach for the simultaneous identification, localization, and quantification of a broad range of oxidative modifications based on so-called "dependent peptides". The strategy involves unrestricted database searches with rigorous filtering focusing on oxidative modifications. The approach was applied to bovine serum albumin and human serum proteins subjected to metal ion-catalyzed oxidation, resulting in the identification of a wide range of different oxidative modifications. The most common modification in the oxidized samples is hydroxylation, but carbonylation, decarboxylation, and dihydroxylation are also abundant, while carbonylation showed the largest increase in abundance relative to nonoxidized samples. Site-specific localization of modified residues reveals several "oxidation hotspots" showing high levels of modification occupancy, including specific histidine, tryptophan, methionine, glutamate, and aspartate residues. The majority of the modifications, however, occur at low occupancy levels on a diversity of side chains.
Collapse
Affiliation(s)
- Martin Rykær
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK 2200 Copenhagen, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Gruber N, Orelli LR, Cipolletti R, Stipa P. Amidinoquinoxaline N-oxides: spin trapping of O- and C-centered radicals. Org Biomol Chem 2017; 15:7685-7695. [PMID: 28872168 DOI: 10.1039/c7ob01387f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amidinoquinoxaline N-oxides represent a novel family of heterocyclic spin traps. In this work, their ability to trap O- and C-centered radicals was tested using selected derivatives with different structural modifications. All the studied nitrones were able to trap radicals forming persistent spin adducts, also in the case of OH and OOH radicals which are of wide biological interest as examples of ROS. The stability of the adducts was mainly attributed to the wide delocalization of the unpaired electron over the whole quinoxaline moiety. The nitroxide spectral parameters (hfccs and g-factors) were analyzed and the results were supported by DFT calculations. The N-19 hfccs and g-factors were characteristic of each aminoxyl and could aid in the identification of the trapped radical. The enhanced stability of the OH adducts under the employed reaction conditions could be ascribed to their possible stabilization by IHBs with two different acceptors: the N-O˙ moiety or the amidine functionality. DFT calculations indicate that the preferred IHB is strongly conditioned by the amidine ring size. While five membered homologues show a clear preference for the IHB with the N-O˙ group, in six membered derivatives this stabilizing interaction is preferentially established with the amidine nitrogen as an IHB acceptor.
Collapse
Affiliation(s)
- Nadia Gruber
- SIMAU Dept. - Chemistry Division, Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona (I-60131), Italy.
| | | | | | | |
Collapse
|
22
|
Prescott C, Bottle SE. Biological Relevance of Free Radicals and Nitroxides. Cell Biochem Biophys 2017; 75:227-240. [PMID: 27709467 DOI: 10.1007/s12013-016-0759-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.
Collapse
|
23
|
A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J Proteomics 2017; 156:40-51. [PMID: 28062376 DOI: 10.1016/j.jprot.2016.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da). BIOLOGICAL SIGNIFICANCE Proteomic tools provide a promising way to decode disease mechanisms at the protein level and help to understand how carbonylation affects protein structure and function. The challenge for future research is to identify the type and nature of oxidised residues to gain a deeper understanding of the mechanism(s) governing carbonylation in cells and organisms and assess their role in disease.
Collapse
|
24
|
Jiang Y, Zheng G, Cai N, Zhang H, Tan Y, Huang M, He Y, He J, Sun H. A fast-response fluorescent probe for hypochlorous acid detection and its application in exogenous and endogenous HOCl imaging of living cells. Chem Commun (Camb) 2017; 53:12349-12352. [DOI: 10.1039/c7cc07373a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A facile fluorescent probe for exogenous and endogenous HOCl detection in living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Ning Cai
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yi Tan
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - Mengjiao Huang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yonghe He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jun He
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Hongyan Sun
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- China
- Key Laboratory of Biochip Technology
| |
Collapse
|
25
|
meta-Tyrosine induces modification of reactive nitrogen species level, protein nitration and nitrosoglutathione reductase in tomato roots. Nitric Oxide 2016; 68:56-67. [PMID: 27810375 DOI: 10.1016/j.niox.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/12/2022]
Abstract
A non-protein amino acid (NPAA) - meta-Tyrosine (m-Tyr), is a harmful compound produced by fescue roots. Young (3-4 days old) tomato (Solanum lycopersicum L.) seedlings were supplemented for 24-72 h with m-Tyr (50 or 250 μM) inhibiting root growth by 50 or 100%, without lethal effect. Fluorescence of DAF-FM and APF derivatives was determined to show reactive nitrogen species (RNS) localization and level in roots of tomato plants. m-Tyr-induced restriction of root elongation growth was related to formation of nitrated proteins described as content of 3-nitrotyrosine. Supplementation with m-Tyr enhanced superoxide radicals generation in extracts of tomato roots and stimulated protein nitration. It correlated well to increase of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives corresponding respectively to NO and ONOO- formation. Alterations in RNS formation induced by m-Tyr were linked to metabolism of nitrosoglutathione (GSNO). Activity of nitrosoglutatione reductase (GSNOR), catalyzing degradation of GSNO was enhanced by long term plant supplementation with m-Tyr, similarly as protein abundance, while transcripts level were only slightly altered by tested NPAA. We conclude, that although in animal cells m-Tyr is considered as a marker of oxidative stress, its secondary mode of action in tomato plants involves perturbation in RNS formation, alteration in GSNO metabolism and modification of protein nitration level.
Collapse
|
26
|
Oxidative stress, free radicals and protein peroxides. Arch Biochem Biophys 2016; 595:33-9. [PMID: 27095212 DOI: 10.1016/j.abb.2015.10.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 06/02/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.
Collapse
|
27
|
Abstract
Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the -SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.
Collapse
Affiliation(s)
- Janusz M Gebicki
- a Department of Biological Sciences , Macquarie University , Sydney , NSW , Australia
| |
Collapse
|
28
|
Ipson BR, Fisher AL. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Res Rev 2016; 27:93-107. [PMID: 27039887 DOI: 10.1016/j.arr.2016.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
Abstract
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress.
Collapse
Affiliation(s)
- Brett R Ipson
- MD/PhD Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Cell and Structural Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alfred L Fisher
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; GRECC, South Texas VA Health Care System, San Antonio, TX, United States.
| |
Collapse
|
29
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
30
|
Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease. Free Radic Biol Med 2015; 89:409-18. [PMID: 26432980 DOI: 10.1016/j.freeradbiomed.2015.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Derrick T Antoniak
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel R Anderson
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
31
|
Degendorfer G, Chuang CY, Hammer A, Malle E, Davies MJ. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free Radic Biol Med 2015; 89:721-33. [PMID: 26453917 DOI: 10.1016/j.freeradbiomed.2015.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 01/23/2023]
Abstract
Basement membranes (BM) are specialized extracellular matrices underlying endothelial cells in the artery wall. Laminin, the most abundant BM glycoprotein, is a structural and biologically active component. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo at sites of inflammation from superoxide and nitric oxide radicals. Considerable data supports ONOOH formation in human atherosclerotic lesions, and an involvement of this oxidant in atherosclerosis development and lesion rupture. These effects may be mediated, at least in part, via extracellular matrix damage. In this study we demonstrate co-localization of 3-nitrotyrosine (a product of tyrosine damage by ONOOH) and laminin in human atherosclerotic lesions. ONOOH-induced damage to BM was characterized for isolated murine BM, and purified murine laminin-111. Exposure of laminin-111 to ONOOH resulted in dose-dependent loss of protein tyrosine and tryptophan residues, and formation of 3-nitrotyrosine, 6-nitrotryptophan and the cross-linked material di-tyrosine, as detected by amino acid analysis and Western blotting. These changes were accompanied by protein aggregation and fragmentation as detected by SDS-PAGE. Endothelial cell adhesion to isolated laminin-111 exposed to 10 μM or higher levels of ONOOH was significantly decreased (~25%) compared to untreated controls. These data indicate that laminin is oxidized by equimolar or greater concentrations of ONOOH, with this resulting in structural and functional changes. These modifications, and resulting compromised cell-matrix interactions, may contribute to endothelial cell dysfunction, a weakening of the structure of atherosclerotic lesions, and an increased propensity to rupture.
Collapse
Affiliation(s)
- Georg Degendorfer
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
32
|
Using an in vitro model to study oxidised protein accumulation in ageing fibroblasts. Biochim Biophys Acta Gen Subj 2015; 1850:2177-84. [DOI: 10.1016/j.bbagen.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022]
|
33
|
Abstract
SIGNIFICANCE A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. RECENT ADVANCES The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. CRITICAL ISSUES It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. FUTURE DIRECTIONS An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition , Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition , Nuthetal, Germany
| |
Collapse
|
34
|
Janmale T, Genet R, Crone E, Flavall E, Firth C, Pirker J, Roake JA, Gieseg SP. Neopterin and 7,8-dihydroneopterin are generated within atherosclerotic plaques. Pteridines 2015. [DOI: 10.1515/pterid-2015-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Plasma neopterin correlates with the level of cardiovascular disease. Neopterin is the oxidation product of 7,8-dihydroneopterin, which is released by γ-interferon-stimulated macrophages. 7,8-Dihydroneopterin is a potent antioxidant, which inhibits lipid oxidation, macrophage cell death and scavenger receptor CD36 expression. The concentration of neopterin within atherosclerotic plaques was measured in tissue removed from carotid and femoral arteries. The excised plaques were cut into 3-mm-thick sections, and each section was analysed for neopterin, total neopterin, cholesterol, lipid peroxides, α-tocopherol and protein-bound 3,4-dihydroxyphenylalanine. Selected plaques were placed in tissue culture, and the media was analysed for 7,8-dihydroneopterin and neopterin release. Total neopterin levels ranged from 14 to 18.8 nmol/g of tissue. Large ranges of values were seen both within the same plaque and between plaques. No correlation between neopterin and any of the other analytes was observed, nor was there any significant trend in levels along the length of the plaques. γ-Interferon stimulation of cultured plaque generated total neopterin concentrations from 1 to 4 nmol/(g 24 h). The level of 7,8-dihydroneopterin generated within the plaque was within the range that inhibits lipid oxidation. The data show that atherosclerotic plaques are extremely dynamic in biochemistry and are the likely source of the plasma 7,8-dihydroneopterin and neopterin.
Collapse
Affiliation(s)
- Tejraj Janmale
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rebecca Genet
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Elizabeth Crone
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Elizabeth Flavall
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Carol Firth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Pirker
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Justin A. Roake
- Department Vascular, Endovascular and Transplant Surgery, Christchurch Hospital, New Zealand
| | | |
Collapse
|
35
|
Kaur RP, Kaur D, Sharma R. Substituent effect on N–H bond dissociation enthalpies of carbamates: a theoretical study. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation deals with the study of the N–H bond dissociation enthalpies (BDEs) of the Y-substituted (NH2-C(=X)Y-R) and N-substituted ((R)(H)NC(=X)YH) carbamates (X, Y = O, S, Se; R = H, CH3, F, Cl, NH2), which have been evaluated using ab initio and density functional methods. The variations in N−H BDEs of these Y-substituted and N-substituted carbamates as the effect of substituent have been understood in terms of molecule stabilization energy (ME) and radical stabilization energy (RE), which have been calculated using the isodesmic reactions. The natural bond orbital analysis indicated that the electrodelocalization of the lone pairs of heteroatoms in the molecules and radicals affect the ME and RE values depending upon the type and site of substitution (whether N- or Y-). The variations in N−H BDEs depend upon the combined effect of molecule stabilization and radical stabilization by the various substituents.
Collapse
Affiliation(s)
| | - Damanjit Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Ritika Sharma
- Guru Nanak Dev University College, Verka, Distt, Amritsar 143001, India
| |
Collapse
|
36
|
Gruber N, Piehl LL, Rubin de Celis E, Díaz JE, García MB, Stipa P, Orelli LR. Amidinoquinoxaline N-oxides as novel spin traps. RSC Adv 2015. [DOI: 10.1039/c4ra14335c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A series of nitrones were synthesized and tested as novel spin traps. The adducts generated by CH3 addition showed remarkably persistent signals. Their EPR features and kinetics were rationalised by DFT and MP2 calculations.
Collapse
Affiliation(s)
- Nadia Gruber
- Departamento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- CONICET
- Buenos Aires
| | - Lidia L. Piehl
- Cátedra de Física
- Departamento de Fisicomatemática
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- Buenos Aires
| | - Emilio Rubin de Celis
- Cátedra de Física
- Departamento de Fisicomatemática
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- Buenos Aires
| | - Jimena E. Díaz
- Departamento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- CONICET
- Buenos Aires
| | - María B. García
- Departamento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- CONICET
- Buenos Aires
| | - Pierluigi Stipa
- S.I.M.A.U. Department Chemistry Division
- Università Politecnica delle Marche
- I-60131 Ancona
- Italy
| | - Liliana R. Orelli
- Departamento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- CONICET
- Buenos Aires
| |
Collapse
|
37
|
Ganini D, Mason RP. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase. Free Radic Biol Med 2014; 76:61-8. [PMID: 25091900 PMCID: PMC4252844 DOI: 10.1016/j.freeradbiomed.2014.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu(2+) or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1mM), Cu(2+) dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu(2+) showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu(2+). In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu(2+) or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu(2+), when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.
Collapse
Affiliation(s)
- Douglas Ganini
- Free Radical Metabolism Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Ronald P Mason
- Free Radical Metabolism Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
38
|
Plowman JE, Deb-Choudhury S, Grosvenor AJ, Dyer JM. Protein oxidation: identification and utilisation of molecular markers to differentiate singlet oxygen and hydroxyl radical-mediated oxidative pathways. Photochem Photobiol Sci 2014; 12:1960-7. [PMID: 24057301 DOI: 10.1039/c3pp50182e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of reactive oxidation species (ROS) on tryptophan or tyrosine was investigated by qualitatively determining the major detectable oxidation products generated by hydroxyl radicals, produced by the Fenton process, or singlet oxygen, generated by exposure to green light in the presence of Rose Bengal, on these photosensitive amino acids in synthetic pentapeptides. Based on mass spectrometric analysis it would appear that the hydroxyl radical favours a pathway leading to the formation of tryptophandione-based products from tryptophan. In contrast singlet oxygen attack appears to favour the formation of kynurenine-type products from tryptophan. Specific oxidative products observed proteomically are therefore potentially able to discriminate between predominant ROS-mediated pathways. To validate these findings, a keratin-enriched extract was exposed to UVB light under aqueous conditions. The observation of the conversion of tryptophan to hydroxytryptophan in marker peptides, and the absence of singlet-oxygen specific modifications, suggested that under these conditions oxidative degradation occurred primarily via hydroxyl radical attack. These observations provide the first direct proteomic evidence of the dominant photodegradation pathways in wet wool.
Collapse
Affiliation(s)
- Jeffrey E Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
39
|
Unique antibody responses to malondialdehyde-acetaldehyde (MAA)-protein adducts predict coronary artery disease. PLoS One 2014; 9:e107440. [PMID: 25210746 PMCID: PMC4161424 DOI: 10.1371/journal.pone.0107440] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease.
Collapse
|
40
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Michalski R, Zielonka J, Gapys E, Marcinek A, Joseph J, Kalyanaraman B. Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid. J Biol Chem 2014; 289:22536-53. [PMID: 24928516 DOI: 10.1074/jbc.m114.553727] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.
Collapse
Affiliation(s)
- Radoslaw Michalski
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Ewa Gapys
- the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- the Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joy Joseph
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Balaraman Kalyanaraman
- From the Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
42
|
Stipa P. OH radical trapping with benzoxazine nitrones: a combined computational and spectroscopic study. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE The understanding of physiological and pathological processes involving protein oxidation, particularly under conditions of aging and oxidative stress, can be aided by proteomic identification of proteins that accumulate oxidative post-translational modifications only if these detected modifications are connected to functional consequences. The modification of tyrosine (Tyr) residues can elicit significant changes in protein structure and function, which, in some cases, may contribute to biological aging and age-related pathologies, such as atherosclerosis, neurodegeneration, and cataracts. RECENT ADVANCES Studies characterizing proteins in which Tyr has been modified to 3-nitrotyrosine, 3,4-dihydroxyphenylalanine, 3,3'-dityrosine and other cross-links, or 3-chlorotyrosine are reviewed, with an emphasis on structural and functional consequences. CRITICAL ISSUES Distinguishing between inconsequential modifications and functionally significant ones requires careful biochemical and biophysical analysis of target proteins, as well as innovative methods for isolating the effects of the multiple modifications that often occur under oxidizing conditions. FUTURE DIRECTIONS The labor-intensive task of isolating and characterizing individual modified proteins must continue, especially given the expanding list of known modifications. Emerging approaches, such as genetic and metabolic incorporation of unnatural amino acids, hold promise for additional focused studies of this kind.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
45
|
Pattison DI, Lam M, Shinde SS, Anderson RF, Davies MJ. The nitroxide TEMPO is an efficient scavenger of protein radicals: cellular and kinetic studies. Free Radic Biol Med 2012; 53:1664-74. [PMID: 22974763 DOI: 10.1016/j.freeradbiomed.2012.08.578] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022]
Abstract
Protein oxidation occurs during multiple human pathologies, and protein radicals are known to induce damage to other cell components. Such damage may be modulated by agents that scavenge protein radicals. In this study, the potential protective reactions of the nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl radical) against Tyr- and Trp-derived radicals (TyrO./TrpN.) have been investigated. Pretreatment of macrophage cells with TEMPO provided protection against photo-oxidation-induced loss of cell viability and Tyr oxidation, with the nitroxide more effective than the hydroxylamine or parent amine. Pulse radiolysis was employed to determine rate constants, k, for the reaction of TEMPO with TyrO. and TrpN. generated on N-Ac-Tyr-amide and N-Ac-Trp-amide, with values of k~10(8) and 7×10(6)M(-1)s(-1), respectively, determined. Analogous studies with lysozyme, chymotrypsin, and pepsin yielded k for TEMPO reacting with TrpN. ranging from 1.5×10(7) (lysozyme) to 1.1×10(8) (pepsin)M(-1)s(-1). Pepsin-derived TyrO. reacted with TEMPO with k~4×10(7)M(-1)s(-1); analogous reactions for lysozyme and chymotrypsin TyrO. were much slower. These data indicate that TEMPO can inhibit secondary reactions of both TyrO. and TrpN., though this is protein dependent. Such protein radical scavenging may contribute to the positive biological effects of nitroxides.
Collapse
|
46
|
Rajendran R, Minqin R, Ronald JA, Rutt BK, Halliwell B, Watt F. Does iron inhibit calcification during atherosclerosis? Free Radic Biol Med 2012; 53:1675-9. [PMID: 22940067 PMCID: PMC4831625 DOI: 10.1016/j.freeradbiomed.2012.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022]
Abstract
Oxidative stress has been implicated in the etiology of atherosclerosis and even held responsible for plaque calcification. Transition metals such as iron aggravate oxidative stress. To understand the relation between calcium and iron in atherosclerotic lesions, a sensitive technique is required that is quantitatively accurate and avoids isolation of plaques or staining/fixing tissue, because these processes introduce contaminants and redistribute elements within the tissue. In this study, the three ion-beam techniques of scanning transmission ion microscopy, Rutherford backscattering spectrometry, and particle-induced X-ray emission have been combined in conjunction with a high-energy (MeV) proton microprobe to map the spatial distribution of the elements and quantify them simultaneously in atherosclerotic rabbit arteries. The results show that iron and calcium within the atherosclerotic lesions exhibit a highly significant spatial inverse correlation. It may be that iron accelerates the progression of atherosclerotic lesion development, but suppresses calcification. Alternatively, calcification could be a defense mechanism against atherosclerotic progression by excluding iron.
Collapse
Affiliation(s)
- Reshmi Rajendran
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542
| | - Ren Minqin
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542
| | | | | | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 117542
| | - Frank Watt
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542
- Corresponding author. (F.Watt)
| |
Collapse
|
47
|
Möller MN, Hatch DM, Kim HYH, Porter NA. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine. J Am Chem Soc 2012; 134:16773-80. [PMID: 22989205 DOI: 10.1021/ja307215z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.
Collapse
Affiliation(s)
- Matías N Möller
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
48
|
Torosantucci R, Mozziconacci O, Sharov V, Schöneich C, Jiskoot W. Chemical modifications in aggregates of recombinant human insulin induced by metal-catalyzed oxidation: covalent cross-linking via michael addition to tyrosine oxidation products. Pharm Res 2012; 29:2276-93. [PMID: 22572797 PMCID: PMC3399080 DOI: 10.1007/s11095-012-0755-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 12/18/2022]
Abstract
PURPOSE To elucidate the chemical modifications in covalent aggregates of recombinant human insulin induced by metal catalyzed oxidation (MCO). METHODS Insulin was exposed for 3 h at room temperature to the oxidative system copper(II)/ascorbate. Chemical derivatization with 4-(aminomethyl) benzenesulfonic acid (ABS) was performed to detect 3,4-dihydroxyphenylalanine (DOPA) formation. Electrospray ionization-mass spectrometry (ESI-MS) was employed to localize the amino acids targeted by oxidation and the cross-links involved in insulin aggregation. Oxidation at different pH and temperature was monitored with size exclusion chromatography (SEC) and ESI-MS analysis to further investigate the chemical mechanism(s), to estimate the aggregates content and to quantify DOPA in aggregated insulin. RESULTS The results implicate the formation of DOPA and 2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl) propanoic acid (DOCH), followed by Michael addition, as responsible for new cross-links resulting in covalent aggregation of insulin during MCO. Michael addition products were detected between DOCH at positions B16, B26, A14, and A19, and free amino groups of the N-terminal amino acids Phe B1 and Gly A1, and side chains of Lys B29, His B5 and His B10. Fragments originating from peptide bond hydrolysis were also detected. CONCLUSION MCO of insulin leads to covalent aggregation through cross-linking via Michael addition to tyrosine oxidation products.
Collapse
Affiliation(s)
- Riccardo Torosantucci
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2. Mol Cell Biochem 2012; 366:277-85. [PMID: 22527933 DOI: 10.1007/s11010-012-1306-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 04/03/2012] [Indexed: 01/26/2023]
Abstract
It has been proposed that high-density lipoprotein (HDL) loses its cardioprotective ability through oxidative modifications by reactive oxygen species (ROS) and promote atherogenesis. However, the pro-atherogenic pathways undergone by oxidized HDL remain poorly understood. Since monocytes play a crucial role in atherogenesis, this study was aimed to investigate the influence of both native and oxidized HDL (oxHDL) on monocytes-macrophages functions relevant to atherogenesis. HDL particles were isolated from human blood samples by ultracentrifugation and subjected to in vitro oxidation with CuSO(4). The extent of oxidation was quantitated by measurement of lipid peroxides. Human peripheral blood mononuclear cells were isolated and cultured under standard conditions. Cells were treated with native and oxHDL at varying concentrations for different time intervals and used for several analyses. Intracellular ROS production was assessed based on ROS-mediated DCFH fluorescence of the cells. The release of TNF-α and matrix metalloproteinases (MMPs) was quantitated using ELISA kit and gelatine zymography, respectively. Treatment of cells with oxidized HDL enhanced the production of ROS in a concentration-dependent way, while native HDL had no such effect. Further, the release of TNF-α, MMP-9, and MMP-2 was found to be remarkably higher in cells incubated with oxHDL than that of native HDL. Results demonstrate that oxidative modification of HDL induces pro-inflammatory response and oxidative stress in human monocytes-macrophages.
Collapse
|
50
|
Moor N, Klipcan L, Safro MG. Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine. ACTA ACUST UNITED AC 2012; 18:1221-9. [PMID: 22035791 DOI: 10.1016/j.chembiol.2011.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 10/15/2022]
Abstract
Aminoacyl-tRNA synthetases exert control over the accuracy of translation by selective pairing the correct amino acids with their cognate tRNAs, and proofreading the misacylated products. Here we show that three existing, structurally different phenylalanyl-tRNA synthetases-human mitochondrial (HsmtPheRS), human cytoplasmic (HsctPheRS), and eubacterial from Thermus thermophilus (TtPheRS), catalyze mischarging of tRNA(Phe) with an oxidized analog of tyrosine-L-dopa. The lowest level of L-dopa discrimination over the cognate amino acid, exhibited by HsmtPheRS, is comparable to that of tyrosyl-tRNA synthetase. HsmtPheRS and TtPheRS complexes with L-dopa revealed in the active sites an electron density shaping this ligand. HsctPheRS and TtPheRS possessing editing activity are capable of hydrolyzing the exogenous L-dopa-tRNA(Phe) as efficiently as Tyr-tRNA(Phe). However, editing activity of PheRS does not guarantee reduction of the aminoacylation error rate to escape misincorporation of L-dopa into polypeptide chains.
Collapse
Affiliation(s)
- Nina Moor
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|