1
|
Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 2022; 25:1134-1148. [PMID: 36042314 PMCID: PMC9448679 DOI: 10.1038/s41593-022-01140-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.
Collapse
Affiliation(s)
- Minee L Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Bhanu P Singh
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- School of Physics, University of Edinburgh, Edinburgh, UK
| | | | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Alexey V Berezhnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | | | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Gurvir S Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Weijia Zhang
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - James R Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna I Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zeinab Shadman Zanjani
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Katie Morris
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Istituto di Biofisica, National Council of Research, Trento, Italy
| | - Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Dementia Research institute at University of Cambridge, Cambridge, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- The Francis Crick Institute, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|
3
|
Eskandari H, Ghanadian M, Noleto-Dias C, Lomax C, Tawfike A, Christiansen G, Sutherland DS, Ward JL, Mohammad-Beigi H, Otzen DE. Inhibitors of α-Synuclein Fibrillation and Oligomer Toxicity in Rosa damascena: The All-Pervading Powers of Flavonoids and Phenolic Glycosides. ACS Chem Neurosci 2020; 11:3161-3173. [PMID: 32886481 DOI: 10.1021/acschemneuro.0c00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is an intense search for natural compounds that can inhibit the oligomerization and fibrillation of α-synuclein (α-Syn), whose aggregation is key to the development of Parkinson's disease (PD). Rosa damascena is a medicinal herb widely used in Middle Eastern food, ceremonies, and perfumes. The herb is known to contain many different polyphenols. Here we investigated the existence of α-Syn fibrillation inhibitors in R. damascena extract. Different HPLC fractions of the extract were assessed in α-Syn fibrillation and toxicity assays. The most active fractions led to the formation of more α-Syn oligomers but with less toxicity to SH-SY5Y cells, according to MTT and LDH assays. LC-MS analysis identified gallic acid, kaempferol 3-glucoside, kaempferol-3-O-β-rutinoside, and quercetin which were subsequently shown to be strong α-Syn fibrillation inhibitors. Our results highlight the benefits of R. damascena extract to combat PD at the population level.
Collapse
Affiliation(s)
- Hoda Eskandari
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, DK− 8000 Aarhus C, Denmark
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Clarice Noleto-Dias
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Herts AL5 2JQ, U.K
| | - Charlotte Lomax
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Herts AL5 2JQ, U.K
| | - Ahmed Tawfike
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Herts AL5 2JQ, U.K
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus University, 8000 Aarhus C, Denmark
| | - Duncan S. Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, DK− 8000 Aarhus C, Denmark
| | - Jane L. Ward
- Computational and Analytical Sciences Department, Rothamsted Research, West Common, Harpenden, Herts AL5 2JQ, U.K
| | - Hossein Mohammad-Beigi
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, DK− 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, DK− 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
van Diggelen F, Frank SA, Somavarapu AK, Scavenius C, Apetri MM, Nielsen J, Tepper AWJW, Enghild JJ, Otzen DE. The interactome of stabilized α-synuclein oligomers and neuronal proteins. FEBS J 2019; 287:2037-2054. [PMID: 31686426 DOI: 10.1111/febs.15124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
While it is generally accepted that α-synuclein oligomers (αSOs) play an important role in neurodegeneration in Parkinson's disease, the basis for their cytotoxicity remains unclear. We have previously shown that docosahexaenoic acid (DHA) stabilizes αSOs against dissociation without compromising their ability to colocalize with glutamatergic synapses of primary hippocampal neurons, suggesting that they bind to synaptic proteins. Here, we develop a proteomic screen for putative αSO binding partners in rat primary neurons using DHA-stabilized human αSOs as a bait protein. The protocol involved co-immunoprecipitation in combination with a photoactivatable heterobifunctional sulfo-LC-SDA crosslinker which did not compromise neuronal binding and preserved the interaction between the αSOs-binding partners. We identify in total 29 proteins associated with DHA-αSO of which eleven are membrane proteins, including synaptobrevin-2B (VAMP-2B), the sodium-potassium pump (Na+ /K+ ATPase), the V-type ATPase, the voltage-dependent anion channel and calcium-/calmodulin-dependent protein kinase type II subunit gamma; only these five hits were also found in previous studies which used unmodified αSOs as bait. We also identified Rab-3A as a target with likely disease relevance. Three out of four selected hits were subsequently validated with dot-blot binding assays. In addition, likely binding sites on these ligands were identified by computational analysis, highlighting a diversity of possible interactions between αSOs and target proteins. These results constitute an important step in the search for disease-modifying treatments targeting toxic αSOs.
Collapse
Affiliation(s)
- Femke van Diggelen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark.,Crossbeta Biosciences AB, Utrecht, the Netherlands
| | - Signe Andrea Frank
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | | | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| |
Collapse
|
5
|
van Diggelen F, Hrle D, Apetri M, Christiansen G, Rammes G, Tepper A, Otzen DE. Two conformationally distinct α-synuclein oligomers share common epitopes and the ability to impair long-term potentiation. PLoS One 2019; 14:e0213663. [PMID: 30901378 PMCID: PMC6430514 DOI: 10.1371/journal.pone.0213663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease for which there currently is no cure. Aggregation of the pre-synaptic protein α-synuclein (aSN) into oligomers (αSOs) is believed to play a key role in PD pathology, but little is known about αSO formation in vivo and how they induce neurodegeneration. Both the naturally occurring polyunsaturated fatty acid docosahexaenoic acid (DHA) and the lipid peroxidation product 4-hydroxynonenal (HNE), strongly upregulated during ROS conditions, stimulate the formation of αSOs, highlighting a potential role in PD. Yet, insight into αSOs structure and biological effects is still limited as most oligomer preparations studied to date are heterogeneous in composition. Here we have aggregated aSN in the presence of HNE and DHA and purified the αSOs using size exclusion chromatography. Both compounds stimulate formation of spherical αSOs containing anti-parallel β-sheet structure which have the same shape as unmodified αSOs though ca. 2-fold larger. Furthermore, the yield and stabilities of these oligomers are significantly higher than for unmodified aSN. Both modified and unmodified αSOs permeabilize synthetic vesicles, show high co-localisation with glutamatergic synapses and decrease Long Term Potentiation (LTP), in line with the reported synaptotoxic effects of αSOs. We conclude that DHA- and HNE-αSOs are convenient models for pathogenic disease-associated αSOs in PD.
Collapse
Affiliation(s)
- Femke van Diggelen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Crossbeta Biosciences BV, Utrecht, The Netherlands
| | - Dean Hrle
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | | | - Gerhard Rammes
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- * E-mail:
| |
Collapse
|
6
|
Li X, Dong C, Hoffmann M, Garen CR, Cortez LM, Petersen NO, Woodside MT. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci Rep 2019; 9:1734. [PMID: 30741954 PMCID: PMC6370846 DOI: 10.1038/s41598-018-37584-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is a protein that aggregates as amyloid fibrils in the brains of patients with Parkinson's disease and dementia with Lewy bodies. Small oligomers of α-synuclein are neurotoxic and are thought to be closely associated with disease. Whereas α-synuclein fibrillization and fibril morphologies have been studied extensively with various methods, the earliest stages of aggregation and the properties of oligomeric intermediates are less well understood because few methods are able to detect and characterize early-stage aggregates. We used fluorescence spectroscopy to investigate the early stages of aggregation by studying pairwise interactions between α-synuclein monomers, as well as between engineered tandem oligomers of various sizes (dimers, tetramers, and octamers). The hydrodynamic radii of these engineered α-synuclein species were first determined by fluorescence correlation spectroscopy and dynamic light scattering. The rate of pairwise aggregation between different species was then monitored using dual-color fluorescence cross-correlation spectroscopy, measuring the extent of association between species labelled with different dyes at various time points during the early aggregation process. The aggregation rate and extent increased with tandem oligomer size. Self-association of the tandem oligomers was found to be the preferred pathway to form larger aggregates: interactions between oligomers occurred faster and to a greater extent than interactions between oligomers and monomers, indicating that the oligomers were not as efficient in seeding further aggregation by addition of monomers. These results suggest that oligomer-oligomer interactions may play an important role in driving aggregation during its early stages.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Chunhua Dong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
Mohite GM, Dwivedi S, Das S, Kumar R, Paluri S, Mehra S, Ruhela N, S A, Jha NN, Maji SK. Parkinson's Disease Associated α-Synuclein Familial Mutants Promote Dopaminergic Neuronal Death in Drosophila melanogaster. ACS Chem Neurosci 2018; 9:2628-2638. [PMID: 29906099 DOI: 10.1021/acschemneuro.8b00107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (α-Syn) aggregation and amyloid formation are associated with loss of dopaminergic neurons in Parkinson's disease (PD). In addition, familial mutations in α-Syn are shown to be one of the definite causes of PD. Here we have extensively studied familial PD associated α-Syn G51D, H50Q, and E46K mutations using Drosophila model system. Our data showed that flies expressing α-Syn familial mutants have a shorter lifespan and exhibit more climbing defects compared to wild-type (WT) flies in an age-dependent manner. The immunofluorescence studies of the brain from the old flies showed more dopaminergic neuronal cell death in all mutants compared to WT. This adverse effect of α-Syn familial mutations is highly correlated with the sustained population of oligomer production and retention in mutant flies. Furthermore, this was supported by our in vitro studies, where significantly higher amount of oligomer was observed in mutants compared to WT. The data suggest that the sustained population of oligomer formation and retention could be a major cause of cell death in α-Syn familial mutants.
Collapse
Affiliation(s)
- Ganesh M. Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saumya Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sravya Paluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Ruhela
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arunima S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Narendra Nath Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Iyer A, Claessens MMAE. Disruptive membrane interactions of alpha-synuclein aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:468-482. [PMID: 30315896 DOI: 10.1016/j.bbapap.2018.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/14/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Alpha synuclein (αS) is a ~14 kDa intrinsically disordered protein. Decades of research have increased our knowledge on αS yet its physiological function remains largely elusive. The conversion of monomeric αS into oligomers and amyloid fibrils is believed to play a central role of the pathology of Parkinson's disease (PD). It is becoming increasingly clear that the interactions of αS with cellular membranes are important for both αS's functional and pathogenic actions. Therefore, understanding interactions of αS with membranes seems critical to uncover functional or pathological mechanisms. This review summarizes our current knowledge of how physicochemical properties of phospholipid membranes affect the binding and aggregation of αS species and gives an overview of how post-translational modifications and point mutations in αS affect phospholipid membrane binding and protein aggregation. We discuss the disruptive effects resulting from the interaction of αS aggregate species with membranes and highlight current approaches and hypotheses that seek to understand the pathogenic and/or protective role of αS in PD.
Collapse
Affiliation(s)
- Aditya Iyer
- Membrane Enzymology Group, University of Groningen, Groningen 9747 AG, The Netherlands
| | | |
Collapse
|
9
|
Andersen KK, Vad BS, Kjær L, Tolker‐Nielsen T, Christiansen G, Otzen DE. Pseudomonas aeruginosa
rhamnolipid induces fibrillation of human α‐synuclein and modulates its effect on biofilm formation. FEBS Lett 2018; 592:1484-1496. [DOI: 10.1002/1873-3468.13038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Kell K. Andersen
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Brian S. Vad
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Lars Kjær
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| | - Tim Tolker‐Nielsen
- Costerton Biofilm Center Department of Immunology and Microbiology University of Copenhagen Denmark
| | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO) Department of Molecular Biology and Genetics Aarhus University Denmark
| |
Collapse
|
10
|
van Diggelen F, Tepper AWJW, Apetri MM, Otzen DE. α-Synuclein Oligomers: A Study in Diversity. Isr J Chem 2016. [DOI: 10.1002/ijch.201600116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Femke van Diggelen
- Crossbeta Biosciences; Padualaan 8 3584CH Utrecht The Netherlands
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| | | | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO); Aarhus University; Gustav Wieds Vej 14 8000C Aarhus Denmark
| |
Collapse
|
11
|
Chaudhary H, Iyer A, Subramaniam V, Claessens MMAE. α-Synuclein Oligomers Stabilize Pre-Existing Defects in Supported Bilayers and Propagate Membrane Damage in a Fractal-Like Pattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11827-11836. [PMID: 27766878 DOI: 10.1021/acs.langmuir.6b02572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phospholipid vesicles are commonly used to get insights into the mechanism by which oligomers of amyloidogenic proteins damage membranes. Oligomers of the protein α-synuclein (αS) are thought to create pores in phospholipid vesicles containing a high amount of anionic phospholipids but fail to damage vesicle membranes at low surface charge densities. The current understanding of how αS oligomers damage the membranes is thus incomplete. This incomplete understanding may, in part, result from the choice of model membrane systems. The use of free-standing membranes such as vesicles may interfere with the unraveling of some damage mechanisms because the line tension at the edge of a membrane defect or pore ensures defect closure. Here, we have used supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPC/POPS) to study the membrane damage caused by αS oligomers. Although αS oligomers were not able to initiate the disruption of POPC/POPS vesicles or intact SLBs, oligomers did stabilize and enlarge pre-existing SLB defects. The increased exposure of lipid acyl chains at the edges of defects very likely facilitates membrane-oligomer interactions, resulting in the growth of fractal domains devoid of lipids. Concomitant with the appearance of the fractal membrane damage patterns, lipids appear in solution, directly implicating αS oligomers in the observed lipid extraction. The growth of the membrane damage patterns is not limited by the binding of lipids to the oligomer. The analysis of the shape and growth of the lipid-free domains suggests the involvement of an oligomer-dependent diffusion-limited extraction mechanism. The observed αS oligomer-induced propagation of membrane defects offers new insights into the mechanisms by which αS oligomers can contribute to the loss in membrane integrity.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| | - Aditya Iyer
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Nanoscale Biophysics Group, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Nanoscale Biophysics Group, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam , De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Mohammad-Beigi H, Morshedi D, Shojaosadati SA, Pedersen JN, Marvian AT, Aliakbari F, Christiansen G, Pedersen JS, Otzen DE. Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation. RSC Adv 2016. [DOI: 10.1039/c6ra08502d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aggregation of the 140-residue protein α-synuclein (αSN) plays a major role in the pathogenesis of different neurodegenerative disorders such as Parkinson's Disease (PD).
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- Interdisciplinary Nanoscience Centre (iNANO)
- Aarhus University
- DK – 8000 Aarhus C
- Denmark
- Biotechnology Group
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
| | | | | | - Amir Tayaranian Marvian
- Department of Biomedicine-Medical Microbiology and Immunology
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
- Student Research Committee and Department of Medical Biotechnology
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Centre (iNANO)
- Aarhus University
- DK – 8000 Aarhus C
- Denmark
- Department of Chemistry
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO)
- Aarhus University
- DK – 8000 Aarhus C
- Denmark
- Department of Molecular Biology and Genetics
| |
Collapse
|
13
|
Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathol Commun 2015; 3:76. [PMID: 26621506 PMCID: PMC4666041 DOI: 10.1186/s40478-015-0257-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. RESULTS Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. CONCLUSIONS Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Anusha Koneti
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Laura Gil
- Department of Genetics, Medical School, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Raul Delgado-Morales
- Cancer Epigenetics and Biology Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Castaño
- Biology-Bellvitge Unit, Scientific and Technological Centers-University of Barcelona (CCiTUB), Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital, carrer Feixa Llarga s/n, 08907, Hospitalet de Llobregat, Spain.
| |
Collapse
|