1
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Liu S, Qiu J, He G, He W, Liu C, Cai D, Pan H. TRAIL promotes hepatocellular carcinoma apoptosis and inhibits proliferation and migration via interacting with IER3. Cancer Cell Int 2021; 21:63. [PMID: 33472635 PMCID: PMC7816514 DOI: 10.1186/s12935-020-01724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce substantial cytotoxicity in tumor cells but rarely exert cytotoxic activity on non-transformed cells. In the present study, we therefore evaluated interactions between TRAIL and IER3 via co-immunoprecipitation and immunofluorescence analyses, leading us to determine that these two proteins were able to drive the apoptotic death of hepatocellular carcinoma (HCC) cells and to disrupt their proliferative and migratory abilities both in vitro and in vivo. From a mechanistic perspective, we determined that TRAIL and IER3 were capable of inhibiting Wnt/β-catenin signaling. Together, these results indicate that TRAIL can control the pathogenesis of HCC at least in part via interacting with IER3 to inhibit Wnt/β-catenin signaling, thus indicating that this TRAIL/IER3/β-catenin axis may be a viable therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Shihai Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Guifang He
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Weitai He
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Changchang Liu
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Duo Cai
- Medical Animal Lab, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles. MATERIALS 2019; 12:ma12172671. [PMID: 31443361 PMCID: PMC6747576 DOI: 10.3390/ma12172671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.
Collapse
|
4
|
Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials 2017; 128:8-18. [PMID: 28285195 DOI: 10.1016/j.biomaterials.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
Abstract
The mucosal surface of the vagina is a primary human immunodeficiency virus (HIV) entry portal, making it an attractive site for HIV vaccination. However, HIV vaccines based on recombinant adenovirus (rAd) do not efficiently cross the mucus layers or underlying epithelium of the vagina. Here we designed nanocomplexes of rAd particles coated with (1) the polyethylene glycol derivative APS to provide a hydrophilic surface that would prevent entrapment in the hydrophobic mucus, and (2) the cell-penetrating peptide TAT to improve transduction efficiency. The optimized rAd-TAT-APS nanocomplexes could achieve the balance of effective mucus-penetrating and cellular transduction. Intravaginal delivery of rAd-TAT-APS encoding HIVgag p24 into mice strongly enhanced HIVgag-specific systemic and mucosal immune responses. This rAd-TAT-APS system may allow effective vaginal delivery of vaccines against HIV and other infectious agents.
Collapse
|
5
|
A targeting peptide improves adenovirus-mediated transduction of a glioblastoma cell line. Oncol Rep 2014; 31:2093-8. [PMID: 24604160 DOI: 10.3892/or.2014.3065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/12/2014] [Indexed: 11/05/2022] Open
Abstract
The progress of the application of adenovirus in cancer gene therapy is hindered by the lack of expression of native adenovirus receptor on a variety of cancer types. Hence, strategies are needed to retarget the adenoviral vector to non-native cellular surface receptors. In the present study, a new peptide SWDIAWPPLKVP, capable of selectively targeting a human glioblastoma cell line A172, was identified by direct biopanning of phage-display peptide libraries. The binding activity of the phage displaying SWDIAWPPLKVP peptide in A172 was more than 10-fold higher than that of the control phage. We then inserted the selected peptide SWDIAWPPLKVP into adenoviral hexon protein, and observed that the modified Ad5 had increased infectivity in A172 cells, compared with that in control cell lines. These findings demonstrated that a peptide acquired through phage display can mediate cell-specific Ad retargeting when inserted into Ad hexon, suggesting an approach for targeting adenoviral infection to specific cancer cells.
Collapse
|
6
|
Chen H, Zheng X, Di B, Wang D, Zhang Y, Xia H, Mao Q. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol 2013. [DOI: 10.1016/j.jbiotec.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Alhakamy NA, Nigatu AS, Berkland CJ, Ramsey JD. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 2013; 4:741-57. [PMID: 23738670 PMCID: PMC4207642 DOI: 10.4155/tde.13.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Adane S Nigatu
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| |
Collapse
|
8
|
Di B, Mao Q, Zhao J, Li X, Wang D, Xia H. A rapid generation of adenovirus vector with a genetic modification in hexon protein. J Biotechnol 2011; 157:373-8. [PMID: 22226912 DOI: 10.1016/j.jbiotec.2011.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 01/25/2023]
Abstract
The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy.
Collapse
Affiliation(s)
- Bingyan Di
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Chai L, Liu S, Mao Q, Wang D, Li X, Zheng X, Xia H. A novel conditionally replicating adenoviral vector with dual expression of IL-24 and arresten inserted in E1 and the region between E4 and fiber for improved melanoma therapy. Cancer Gene Ther 2011; 19:247-54. [DOI: 10.1038/cgt.2011.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Wang D, Liu S, Mao Q, Zhao J, Xia H. A novel vector for a rapid generation of fiber-mutant adenovirus based on one step ligation and quick screening of positive clones. J Biotechnol 2011; 152:72-6. [DOI: 10.1016/j.jbiotec.2011.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/26/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
|