1
|
Functional and Structural Biological Methods for Palytoxin Detection. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palytoxin (PLTX) and its analogues are marine polyethers identified in Palythoa and Zoanthus corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Humans can be exposed to these toxins by different routes with a series of adverse effects but the most severe risk is associated with poisonings by the consumption of edible marine organisms accumulating these toxins, as occurs in (sub)-tropical areas. In temperate areas, adverse effects ascribed to PLTXs have been recorded after inhalation of marine aerosols and/or cutaneous contact with seawater during Ostreopsis blooms, as well as during cleaning procedures of Palythoa-containing home aquaria. Besides instrumental analytical methods, in the last years a series of alternative or complementary methods based on biological/biochemical tools have been developed for the rapid and specific PLTX detection required for risk assessment. These methods are usually sensitive, cost- and time-effective, and do not require highly specialized operators. Among them, structural immunoassays and functional cell-based assays are reviewed. The availability of specific anti-PLTX antibodies allowed the development of different sensitive structural assays, suitable for its detection also in complex matrices, such as mussels. In addition, knowing the mechanism of PLTX action, a series of functional identification methods has been developed. Despite some of them being limited by matrix effects and specificity issues, biological methods for PLTX detection represent a feasible tool, suitable for rapid screening.
Collapse
|
2
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
3
|
Abe T, Naito T, Uemura D. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis of Palytoxin. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many natural products have been isolated from various marine organisms. These natural products, especially huge polyol and polyether compounds, are expected to be promising drug-leads. On the other hand, the accumulation of these compounds in fish and shellfish can cause food poisoning in humans. Therefore, the development of effective methods for the detection of these compounds is important from both academic and public health perspectives. We subjected palytoxin to an SDS-PAGE analysis, which is very easy, quick, and inexpensive, to determine whether this approach could be effective for detecting huge polyol natural products. Eventually, we were able to detect a band of palytoxin by SDS-PAGE analysis, which demonstrated that SDS-PAGE could be useful for detecting polyol and polyether compounds.
Collapse
Affiliation(s)
- Takahiro Abe
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Takayuki Naito
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| | - Daisuke Uemura
- Research Institute of Natural Drug-Leads, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan
| |
Collapse
|
4
|
Fraga M, Vilariño N, Louzao MC, Fernández DA, Poli M, Botana LM. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Anal Chim Acta 2015; 903:1-12. [PMID: 26709295 DOI: 10.1016/j.aca.2015.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Diego A Fernández
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mark Poli
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
5
|
Silva M, Pratheepa VK, Botana LM, Vasconcelos V. Emergent toxins in North Atlantic temperate waters: a challenge for monitoring programs and legislation. Toxins (Basel) 2015; 7:859-85. [PMID: 25785464 PMCID: PMC4379530 DOI: 10.3390/toxins7030859] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
Abstract
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
Collapse
Affiliation(s)
- Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| | - Vijaya K Pratheepa
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, Lugo 27002, Spain.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| |
Collapse
|
6
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
7
|
Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR, Jüttner F, Botana LM. Hapalindoles from the Cyanobacterium Fischerella: Potential Sodium Channel Modulators. Chem Res Toxicol 2014; 27:1696-706. [DOI: 10.1021/tx500188a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Cagide
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Paul G. Becher
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - M. Carmen Louzao
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Begoña Espiña
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Friedrich Jüttner
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
8
|
Development of a haemolytic-enzymatic assay with mediated amperometric detection for palytoxin analysis: application to mussels. Anal Bioanal Chem 2014; 406:2399-410. [PMID: 24573577 DOI: 10.1007/s00216-014-7630-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
An electrochemical sensor for palytoxin (PlTX) detection, based on a strip of eight screen-printed electrodes connected to a cost-effective and portable apparatus, is reported. Sheep erythrocytes were used to test the palytoxin detector and degree of haemolysis was evaluated by measuring release of the cytosolic lactate dehydrogenase (LDH). Percentage haemolysis and, therefore, the amount of LDH measured, by use of NADH/pyruvate and appropriate electrochemical mediators, was correlated with the concentration of the toxin. Two different electrochemical approaches were investigated for evaluation of LDH release, but only one based on the use of a binary redox mediator sequence (phenazine methosulfate in conjugation with hexacyanoferrate(III)) proved useful for our purpose. After analytical and biochemical characterization, the sensor strip was used to measure palytoxin. Sheep blood and standard solutions of PlTX were left to react for two different incubation times (24 h or 4 h), resulting in working ranges of 7 × 10(-3)-0.02 ng mL(-1) and 0.16-1.3 ng mL(-1), respectively. The specificity of the test for palytoxin was evaluated by use of ouabain, which acts in the same way as PlTX on the Na(+)/K(+)-ATPase pump. A cross-reactivity study, using high concentrations of other marine biotoxins was also conducted. Experiments to evaluate the matrix effect and recovery from mussels are discussed.
Collapse
|
9
|
Fernández DA, Louzao MC, Vilariño N, Espiña B, Fraga M, Vieytes MR, Román A, Poli M, Botana LM. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. FEBS J 2013; 280:3906-19. [DOI: 10.1111/febs.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Diego A. Fernández
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - M. Carmen Louzao
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Natalia Vilariño
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Begoña Espiña
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
- International Iberian Nanotechnology Laboratory (INL); Braga Portugal
| | - María Fraga
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología Animal; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Albina Román
- Unidad de Microscopía Electrónica y Confocal; Edificio CACTUS; Lugo Spain
| | - Mark Poli
- Integrated Toxicology Division; US Army Medical Research Institute of Infectious Diseases; Fort Detrick MD USA
| | - Luis M. Botana
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| |
Collapse
|
10
|
Vilariño N, Louzao MC, Fraga M, Rodríguez LP, Botana LM. Innovative detection methods for aquatic algal toxins and their presence in the food chain. Anal Bioanal Chem 2013; 405:7719-32. [PMID: 23820950 DOI: 10.1007/s00216-013-7108-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023]
Abstract
Detection of aquatic algal toxins has become critical for the protection of human health. During the last 5 years, techniques such as optical, electrochemical, and piezoelectric biosensors or fluorescent-microsphere-based assays have been developed for the detection of aquatic algal toxins, in addition to optimization of existing techniques, to achieve higher sensitivities, specificity, and speed or multidetection. New toxins have also been incorporated in the array of analytical and biological methods. The impact of the former innovation on this field is highlighted by recent changes in legal regulations, with liquid chromatography-mass spectrometry becoming the official reference method for marine lipophilic toxins and replacing the mouse bioassay in many countries. This review summarizes the large international effort to provide routine testing laboratories with fast, sensitive, high-throughput, multitoxin, validated methods for the screening of seafood, algae, and water samples.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain,
| | | | | | | | | |
Collapse
|
11
|
Pelin M, Boscolo S, Poli M, Sosa S, Tubaro A, Florio C. Characterization of palytoxin binding to HaCaT cells using a monoclonal anti-palytoxin antibody. Mar Drugs 2013; 11:584-98. [PMID: 23442788 PMCID: PMC3705359 DOI: 10.3390/md11030584] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/12/2013] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Abstract
Palytoxin (PLTX) is the reference compound for a group of potent marine biotoxins, for which the molecular target is Na+/K+-ATPase. Indeed, ouabain (OUA), a potent blocker of the pump, is used to inhibit some PLTX effects in vitro. However, in an effort to explain incomplete inhibition of PLTX cytotoxicity, some studies suggest the possibility of two different binding sites on Na+/K+-ATPase. Hence, this study was performed to characterize PLTX binding to intact HaCaT keratinocytes and to investigate the ability of OUA to compete for this binding. PLTX binding to HaCaT cells was demonstrated by immunocytochemical analysis after 10 min exposure. An anti-PLTX monoclonal antibody-based ELISA showed that the binding was saturable and reversible, with a K(d) of 3 × 10-10 M. However, kinetic experiments revealed that PLTX binding dissociation was incomplete, suggesting an additional, OUA-insensitive, PLTX binding site. Competitive experiments suggested that OUA acts as a negative allosteric modulator against high PLTX concentrations (0.3-1.0 × 10-7 M) and possibly as a non-competitive antagonist against low PLTX concentrations (0.1-3.0 × 10-9 M). Antagonism was supported by PLTX cytotoxicity inhibition at OUA concentrations that displaced PLTX binding (1 × 10-5 M). However, this inhibition was incomplete, supporting the existence of both OUA-sensitive and -insensitive PLTX binding sites.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; E-Mails: (M.P.); (S.B.); (S.S.); (C.F.)
| | - Sabrina Boscolo
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; E-Mails: (M.P.); (S.B.); (S.S.); (C.F.)
| | - Mark Poli
- U.S. Army Medical Research Institute of Infectious Diseases, Ft Detrick, MD 21701, USA; E-Mail:
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; E-Mails: (M.P.); (S.B.); (S.S.); (C.F.)
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; E-Mails: (M.P.); (S.B.); (S.S.); (C.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-040-5588835; Fax: +39-040-5583215
| | - Chiara Florio
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; E-Mails: (M.P.); (S.B.); (S.S.); (C.F.)
| |
Collapse
|
12
|
Alfonso A, Fernández-Araujo A, Alfonso C, Caramés B, Tobio A, Louzao M, Vieytes M, Botana L. Palytoxin detection and quantification using the fluorescence polarization technique. Anal Biochem 2012; 424:64-70. [DOI: 10.1016/j.ab.2012.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 11/16/2022]
|
13
|
Ledreux A, Sérandour AL, Morin B, Derick S, Lanceleur R, Hamlaoui S, Furger C, Biré R, Krys S, Fessard V, Troussellier M, Bernard C. Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part II: application to shellfish extracts spiked with lipophilic marine toxins. Anal Bioanal Chem 2012; 403:1995-2007. [DOI: 10.1007/s00216-012-6029-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
|
14
|
|
15
|
Kagiava A, Aligizaki K, Katikou P, Nikolaidis G, Theophilidis G. Assessing the neurotoxic effects of palytoxin and ouabain, both Na+/K+-ATPase inhibitors, on the myelinated sciatic nerve fibres of the mouse: An ex vivo electrophysiological study. Toxicon 2012; 59:416-26. [DOI: 10.1016/j.toxicon.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
|
16
|
Espiña B, Louzao MC, Ares IR, Fonfria ES, Vilariño N, Vieytes MR, Botana LM. Disruption of the actin cytoskeleton induces fluorescent glucose accumulation on the rat hepatocytes Clone 9. Cell Physiol Biochem 2011; 27:653-60. [PMID: 21691083 DOI: 10.1159/000330074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucose transport and metabolism are highly specialized in hepatocytes. Actin cytoskeleton is fundamental to the maintenance of their morphology as well as to ensure their functionality. Here we study the effect of the actin disrupting natural compounds cytochalasin B and latrunculin A on the glucose metabolism of the Clone 9 rat hepatocytes once the glucose molecule is inside them and the effects of two hormones which main function is regulating the glucose metabolism on the actin cytoskeleton of Clone 9 cells. METHODS F-actin was labeled by using Oregon Green 514 ® phalloidin and glucose inside cells was monitored with the fluorescent D-glucose derivative; 2-NBDG. Observations and measurements were carried out by using a confocal microscope. RESULTS Nor insulin neither glucagon was able to induce any significant effect in the quantity of F-actin present on Clone 9 cells. But insulin triggers a strong reorganization on the pattern of distribution of F-actin. However, the actin cytoskeleton disruption induced by CB and more efficiently by Lat A caused accumulation of 2-NBDG in cells. CONCLUSION These results state that disruption of the actin cytoskeleton induces fluorescent glucose accumulation on the rat hepatocytes Clone 9 suggesting that actin disrupting agents cause a blockage in the glycolytic pathway of Clone 9 hepatocytes.
Collapse
Affiliation(s)
- Begoña Espiña
- Departamento de Farmacologia, Facultad de Veterinaria, Campus de Lugo, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Cagide E, Louzao MC, Espiña B, Ares IR, Vieytes MR, Sasaki M, Fuwa H, Tsukano C, Konno Y, Yotsu-Yamashita M, Paquette LA, Yasumoto T, Botana LM. Comparative cytotoxicity of gambierol versus other marine neurotoxins. Chem Res Toxicol 2011; 24:835-42. [PMID: 21517028 DOI: 10.1021/tx200038j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many microalgae produce compounds that exhibit potent biological activities. Ingestion of marine organisms contaminated with those toxins results in seafood poisonings. In many cases, the lack of toxic material turns out to be an obstacle to make the toxicological investigations needed. In this study, we evaluate the cytotoxicity of several marine toxins on neuroblastoma cells, focusing on gambierol and its effect on cytosolic calcium levels. In addition, we compared the effects of this toxin with ciguatoxin, brevetoxin, and gymnocin-A, with which gambierol shares a similar ladder-like backbone, as well as with polycavernoside A analogue 5, a glycosidic macrolide toxin. For this purpose, different fluorescent dyes were used: Fura-2 to monitor variations in cytosolic calcium levels, Alamar Blue to detect cytotoxicity, and Oregon Green 514 Phalloidin to quantify and visualize modifications in the actin cytoskeleton. Data showed that, while gambierol and ciguatoxin were successful in producing a calcium influx in neuroblastoma cells, gymnocin-A was unable to modify this parameter. Nevertheless, none of the toxins induced morphological changes or alterations in the actin assembly. Although polycavernoside A analogue 5 evoked a sharp reduction of the cellular metabolism of neuroblastoma cells, gambierol scarcely reduced it, and ciguatoxin, brevetoxin, and gymnocin-A failed to produce any signs of cytotoxicity. According to this, sharing a similar polycyclic ether backbone is not enough to produce the same effects on neuroblastoma cells; therefore, more studies should be carried out with these toxins, whose effects may be being underestimated.
Collapse
Affiliation(s)
- E Cagide
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim IS, Ren X, Chang JS, Lee JW, Yu HW, Kim SJ, Heo JS, Jang A, Han HJ. The effect of environmental micropollutant (DEET) on the expression of cell cycle and apoptosis regulatory proteins in human cells. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0173-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Kerbrat AS, Amzil Z, Pawlowiez R, Golubic S, Sibat M, Darius HT, Chinain M, Laurent D. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar Drugs 2011; 9:543-560. [PMID: 21731549 PMCID: PMC3124972 DOI: 10.3390/md9040543] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 11/16/2022] Open
Abstract
Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales) are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed.
Collapse
Affiliation(s)
- Anne Sophie Kerbrat
- Toulouse University, UPS, UMR152 UPS-IRD (PHARMA-DEV), 118, route de Narbonne, F-31062 Toulouse cedex 9, France; E-Mail:
- Research Institute for the Development (IRD), UMR152, 98848 Noumea, New Caledonia
| | - Zouher Amzil
- Laboratory of Phycotoxins, IFREMER, Rue de l’Ile d’Yeu, BP21105, F-44311 Nantes cedex 3, France; E-Mails: (Z.A.); (M.S.)
| | - Ralph Pawlowiez
- Laboratory of toxic micro-algae (LMT), Louis Malarde Institute (ILM), BP30, 98713 Papeete, Tahiti, French Polynesia; E-Mails: (R.P.); (H.T.D.); (M.C.)
| | - Stjepko Golubic
- Biological Science Center, Boston University, 5 Cummington Street, Boston, MA 02215, USA; E-Mail:
| | - Manoella Sibat
- Laboratory of Phycotoxins, IFREMER, Rue de l’Ile d’Yeu, BP21105, F-44311 Nantes cedex 3, France; E-Mails: (Z.A.); (M.S.)
| | - Helene Taiana Darius
- Laboratory of toxic micro-algae (LMT), Louis Malarde Institute (ILM), BP30, 98713 Papeete, Tahiti, French Polynesia; E-Mails: (R.P.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Laboratory of toxic micro-algae (LMT), Louis Malarde Institute (ILM), BP30, 98713 Papeete, Tahiti, French Polynesia; E-Mails: (R.P.); (H.T.D.); (M.C.)
| | - Dominique Laurent
- Toulouse University, UPS, UMR152 UPS-IRD (PHARMA-DEV), 118, route de Narbonne, F-31062 Toulouse cedex 9, France; E-Mail:
- Research Institute for the Development (IRD), UMR152, 98713 Papeete, Tahiti, French Polynesia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +689-47-42-16; Fax: +689-42-95-55
| |
Collapse
|
20
|
Riobó P, Franco JM. Palytoxins: Biological and chemical determination. Toxicon 2011; 57:368-75. [DOI: 10.1016/j.toxicon.2010.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
|
21
|
Louzao MC, Ares IR, Cagide E, Espiña B, Vilariño N, Alfonso A, Vieytes MR, Botana LM. Palytoxins and cytoskeleton: An overview. Toxicon 2011; 57:460-9. [DOI: 10.1016/j.toxicon.2010.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022]
|
22
|
Aligizaki K, Katikou P, Milandri A, Diogène J. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art. Toxicon 2010; 57:390-9. [PMID: 21126531 DOI: 10.1016/j.toxicon.2010.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/05/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
Palytoxin (PlTX) and palytoxin-like (PlTX-like) compounds in seafood have been raising scientific concern in the last years. The constant increase in record numbers of the causative dinoflagellates of the genus Ostreopsis together with the large spatial expansion of this genus has led to intensification of research towards optimization of methods for determination of PlTX presence and toxicity. In this context, identification of seafood species which could possibly contain PlTXs constitutes an important issue for public health protection. In the present paper, worldwide occurrence of PlTX-like compounds in seafood is reviewed, while potential future strategies are discussed. PlTX has been reported to be present in several species of fish, crustaceans, molluscs and echinoderms. In one occasion, PlTX has been identified in freshwater puffer fish whereas all other records of PlTXs refer to marine species and have been recorded in latitudes approximately between 43°N and 15°S. PlTX determination in seafood has relied on different methodologies (mainly LC-MS, mouse bioassay and hemolysis neutralization assay) that have evolved over time. Future recommendations include systematic screening of PlTX in those species and areas where PlTX has already been recorded implementing updated methodologies.
Collapse
Affiliation(s)
- Katerina Aligizaki
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, PO Box 109, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
23
|
Ciminiello P, Dell'Aversano C, Dello Iacovo E, Fattorusso E, Forino M, Tartaglione L. LC-MS of palytoxin and its analogues: State of the art and future perspectives. Toxicon 2010; 57:376-89. [PMID: 21070802 DOI: 10.1016/j.toxicon.2010.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The state of the art of LC-MS of palytoxin and its analogues is reported in the present review. MS data for palytoxin, 42-hydroxy-palytoxin, ostreocin-D, mascarenotoxins, and ovatoxins, obtained using different ionization techniques, namely fast-atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), and electrospray ionization (ESI), are summarized together with the LC-MS methods used for their detection. Application of the developed LC-MS methods to both plankton and seafood analysis is also reported, paying attention to the extraction procedures used and to limits of detection (LOD) and quantitation (LOQ) achieved. In a research setting, LC-MS has shown a good potential in determination of palytoxin and its analogues from various sources, but, in a regulatory setting, routine LC-MS analysis of palytoxins is still at a preliminary stage. The LOQ currently achieved in seafood analysis appears insufficient to detect palytoxins in shellfish extract at levels close to the tolerance limit for palytoxins (30 μg/kg) proposed by the European Food Safety Authority (EFSA, 2009). In addition, lacking of certified reference standard of palytoxins as well as of validation studies for the proposed LC-MS methods represent important issues that should be faced for future perspectives of LC-MS technique.
Collapse
Affiliation(s)
- Patrizia Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Kantiani L, Llorca M, Sanchís J, Farré M, Barceló D. Emerging food contaminants: a review. Anal Bioanal Chem 2010; 398:2413-27. [PMID: 20680618 DOI: 10.1007/s00216-010-3944-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/31/2010] [Accepted: 06/20/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Lina Kantiani
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Biological methods for marine toxin detection. Anal Bioanal Chem 2010; 397:1673-81. [PMID: 20458470 DOI: 10.1007/s00216-010-3782-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 04/13/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
The presence of marine toxins in seafood poses a health risk to human consumers which has prompted the regulation of the maximum content of marine toxins in seafood in the legislations of many countries. Most marine toxin groups are detected by animal bioassays worldwide. Although this method has well known ethical and technical drawbacks, it is the official detection method for all regulated phycotoxins except domoic acid. Much effort by the scientific and regulatory communities has been focused on the development of alternative techniques that enable the substitution or reduction of bioassays; some of these have recently been included in the official detection method list. During the last two decades several biological methods including use of biosensors have been adapted for detection of marine toxins. The main advances in marine toxin detection using this kind of technique are reviewed. Biological methods offer interesting possibilities for reduction of the number of biosassays and a very promising future of new developments.
Collapse
|
26
|
Louzao MC, Espiña B, Cagide E, Ares IR, Alfonso A, Vieytes MR, Botana LM. Cytotoxic effect of palytoxin on mussel. Toxicon 2010; 56:842-7. [PMID: 20206198 DOI: 10.1016/j.toxicon.2010.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/05/2010] [Accepted: 02/22/2010] [Indexed: 12/01/2022]
Abstract
Palytoxin is a large and complex polyhydroxylated molecule with potent neurotoxic activity. Dinoflagellates from the Ostreopsis genera were demonstrated to be producers of this compound and analogues. Even though initially palytoxin appearance was restricted to tropical areas, the recent occurrence of Ostreopsis outbreaks in Mediterranean Sea point to a worldwide dissemination probably related to climatic change. Those dinoflagellates can bioaccumulate in shellfish, especially in filter-feeding mollusks and have been involved in damaging effects in seafood or human toxic outbreaks. The present study describes palytoxins effect on metabolic activity of mantle and hepatopancreas cells from the mussel Mytilus galloprovincialis Lmk. Our results indicate that palytoxin is highly cytotoxic to mussel cells; unlike it happens with other toxins more common in European coasts such as okadaic acid and azaspiracid. These findings have a special significance for the marine environment and aquiculture since they are evidence for the ability of palytoxin to affect the integrity of bivalve mollusks that are not adapted to the presence of this toxin.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Espiña B, Louzao MC, Ares IR, Fonfría ES, Vilariño N, Vieytes MR, Yasumoto T, Botana LM. Impact of the Pectenotoxin C-43 Oxidation Degree on Its Cytotoxic Effect on Rat Hepatocytes. Chem Res Toxicol 2010; 23:504-15. [DOI: 10.1021/tx9002337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Begoña Espiña
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - M. Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Isabel R. Ares
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Eva S. Fonfría
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Mercedes R. Vieytes
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Takeshi Yasumoto
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Departamento de Fisiologia Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, and Japan Food Research Laboratories, Tama, Tokyo 206-0025, Japan
| |
Collapse
|
28
|
Espiña B, Louzao MC, Cagide E, Alfonso A, Vieytes MR, Yasumoto T, Botana LM. The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. Br J Pharmacol 2009; 159:337-44. [PMID: 20015092 DOI: 10.1111/j.1476-5381.2009.00512.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Okadaic acid (OA) and microcystins (MCs) are structurally different toxins with the same mechanism of action, inhibition of serine/threonine protein phosphatases (PPs). Methyl okadaate (MeOk), a methyl ester derivative of OA, was considered almost inactive due to its weak inhibition of PP1 and PP2A. Here, we have investigated the activity and potency of MeOk in hepatic cells in comparison with that of OA and MCs. EXPERIMENTAL APPROACH We tested the effects of MeOK, OA and microcystin-leucine and arginine (MC-LR) on the metabolic rate, the actin cytoskeleton and glucose uptake in a rat hepatocyte cell line (Clone 9) and in primary cultured rat hepatocytes. PP2A was assayed to compare OA and MeOk activity. KEY RESULTS MeOk disrupted the actin cytoskeleton and depressed the metabolic rate of both types of rat hepatocytes, being six-fold less potent than OA in Clone 9 cells but nearly six-fold more potent in primary cultured hepatocytes. However, unlike OA, MeOk did not change glucose uptake in these cells, suggesting a weak inhibition of PP2A, as confirmed in direct assays of PP2A activity. CONCLUSIONS AND IMPLICATIONS Although MeOk was originally described as a weakly bioactive molecule, it clearly depressed the metabolic rate and disrupted the cytoskeleton in primary and immortalized rat hepatocytes. Furthermore, MeOk affected primary hepatocytes at much lower concentrations than those affecting immortalized cells. These effects were unrelated to PP2A inhibition. Our results suggest the risk to public health from MeOk in foodstuffs should be re-evaluated.
Collapse
Affiliation(s)
- Begoña Espiña
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Use of biosensors as alternatives to current regulatory methods for marine biotoxins. SENSORS 2009; 9:9414-43. [PMID: 22291571 PMCID: PMC3260648 DOI: 10.3390/s91109414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/12/2022]
Abstract
Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology.
Collapse
|
30
|
Caillaud A, Cañete E, de la Iglesia P, Giménez G, Diogène J. Cell-based assay coupled with chromatographic fractioning: a strategy for marine toxins detection in natural samples. Toxicol In Vitro 2009; 23:1591-6. [PMID: 19720129 DOI: 10.1016/j.tiv.2009.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/23/2009] [Accepted: 08/25/2009] [Indexed: 01/09/2023]
Abstract
Cell-based assays (CBA) have been proposed for the evaluation of toxicity caused by marine toxins in natural samples (fish, shellfish and microalgae). However, their application has been hindered due to the interferences present in biological matrices that may cause cellular response and interfere in toxicity evaluation. This work reviews in an extensive introduction the use of CBA for toxicity evaluation of marine toxins. Afterwards, the coupling of chromatographic fractioning with neuroblastoma Neuro-2a CBA is presented to enhance the applicability of CBA for complex matrices. Examples of application are provided for mussel samples (Mytilus galloprovincialis) and microalgae (Gambierdiscus sp.), and the results demonstrated the great potential of the combined strategy for reliable toxicological evaluation without ethical concern. Fractioning of an equivalent of 72 mg eq mL(-1) of mussel sample allowed the identification of non-toxic and toxic fractions whereas only 2.5mg eq mL(-1) of non-purified mussel sample was responsible for 20% of cell mortality. Furthermore, the application of CBA allowed selectively distinguishing between ciguatoxin-like and other unspecific toxicity in Gambierdiscus sp. extract.
Collapse
Affiliation(s)
- A Caillaud
- IRTA, C. Poble Nou, Km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | | | | | | |
Collapse
|
31
|
Seemann P, Gernert C, Schmitt S, Mebs D, Hentschel U. Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie van Leeuwenhoek 2009; 96:405-11. [PMID: 19504172 DOI: 10.1007/s10482-009-9353-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/19/2009] [Indexed: 02/07/2023]
Abstract
Palytoxin (PTX), one of the most potent and chemically complex marine toxins, is predominantly found in zoanthid corals and sporadically in dinoflagellates. Its biosynthesis and metabolic pathways are largely unknown. However, the widespread occurrence of the toxin in phylogenetically distinct marine organisms is consistent with its production by microorganisms and subsequent accumulation in the food chain. To investigate a possible microbial origin, bacteria from two zoanthid corals (Palythoa caribaeorum, Zoanthus pulchellus) and one sponge (Neofibularia nolitangere) were isolated. More than 250 bacteria were screened for hemolysis using a newly developed PTX-screening assay of which 7% showed PTX-like hemolytic activity. 16S rRNA gene sequencing revealed that these bacterial isolates belonged to strains of Bacillus cereus group (n = 11) as well as the genera Brevibacterium (n = 4) and Acinetobacter (n = 2). The results indicate the presence of Na+/K+-ATPase toxins and possibly PTX in hemolytic bacteria from P. caribaeorum.
Collapse
Affiliation(s)
- Petra Seemann
- Zentrum der Rechtsmedizin, University of Frankfurt, Kennedyallee 104, 60596 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
32
|
Functional assays for marine toxins as an alternative, high-throughput-screening solution to animal tests. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|