1
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Abstract
In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.
Collapse
Affiliation(s)
- Matjaž Zorko
- Medical Faculty, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia.
| | - Ülo Langel
- Department of Biochemistry and Biophysics, University of Stockholm, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
5
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
6
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
7
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
8
|
Mehta N, Gava AL, Zhang D, Gao B, Krepinsky JC. Follistatin Protects Against Glomerular Mesangial Cell Apoptosis and Oxidative Stress to Ameliorate Chronic Kidney Disease. Antioxid Redox Signal 2019; 31:551-571. [PMID: 31184201 DOI: 10.1089/ars.2018.7684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Interventions to inhibit oxidative stress and apoptosis, important pathogenic contributors toward the progression of chronic kidney disease (CKD), are not well established. Here, we investigated the role of a transforming growth factor beta (TGFβ) superfamily neutralizing protein, follistatin (FST), in the regulation of apoptosis and oxidative stress in glomerular mesangial cells (MCs) and in the progression of CKD. Results: The endoplasmic reticulum (ER) stress inducer thapsigargin (Tg), known to cause MC apoptosis, led to a post-translational increase in the expression of FST. Recombinant FST protected, whereas FST downregulation augmented, Tg-induced apoptosis without affecting Ca2+ release or ER stress induction. Although activins are the primary ligands neutralized by FST, their inhibition with neutralizing antibodies did not affect Tg-induced apoptosis. Instead, FST protected against Tg-induced apoptosis through neutralization of reactive oxygen species (ROS) independently of its ability to neutralize activins. Importantly, administration of FST to mice with CKD protected against renal cell apoptosis and oxidative stress. This was associated with improved kidney function, reduced albuminuria, and attenuation of fibrosis. Innovation and Conclusion: Independent of its activin neutralizing ability, FST protected against Tg-induced apoptosis through neutralization of ROS and consequent suppression of oxidative stress, seen both in vitro and in vivo. Importantly, FST also ameliorated fibrosis and improved kidney function in CKD. FST is, thus, a novel potential therapeutic agent for delaying the progression of CKD. Antioxid. Redox Signal. 31, 551-571.
Collapse
Affiliation(s)
- Neel Mehta
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata L Gava
- 2Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | - Dan Zhang
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- 1Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
9
|
Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery. Molecules 2019; 24:molecules24122211. [PMID: 31200490 PMCID: PMC6631009 DOI: 10.3390/molecules24122211] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on siRNA delivery have seen intense growth in the past decades since siRNA has emerged as a new class of gene therapeutics for the treatment of various diseases. siRNA bioconjugate, as one of the major delivery strategies, offers the potential to enhance and broaden pharmacological properties of siRNA, while minimizing the heterogeneity and stability-correlated toxicology. This review summarizes the recent developments of siRNA bioconjugate, including the conjugation with antibody, peptide, aptamer, small chemical, lipidoid, cell-penetrating peptide polymer, and nanoparticle. These siRNA bioconjugate, either administrated alone or formulated with other agents, could significantly improve pharmacokinetic behavior, enhance the biological half-life, and increase the targetability while maintaining sufficient gene silencing activity, with a concomitant improvement of the therapeutic outcomes and diminishment of adverse effects. This review emphasizes the delivery application of these siRNA bioconjugates, especially the conjugation strategy that control the integrity, stability and release of siRNA bioconjugates. The limitations conferred by these conjugation strategies have also been covered.
Collapse
|
10
|
Lowrence RC, Ramakrishnan A, Sundaramoorthy NS, Shyam A, Mohan V, Subbarao HMV, Ulaganathan V, Raman T, Solomon A, Nagarajan S. Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens. J Appl Microbiol 2018; 124:408-422. [PMID: 29178633 DOI: 10.1111/jam.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/14/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
AIMS To enhance the antimicrobial and antibiofilm activity of norfloxacin against the planktonic and biofilm mode of growth in ESKAPE pathogens using chemically modified norfloxacin salts. METHODS AND RESULTS Antimicrobial testing, synergy testing and time-kill curve analysis were performed to evaluate antibacterial effect of norfloxacin carboxylic acid salts against ESKAPE pathogens. In vivo efficacy to reduce bacterial bioburden was evaluated in zebrafish infection model. Crystal violet assay and live-dead staining were performed to discern antibiofilm effect. Membrane permeability, integrity and molecular docking studies were carried out to ascertain the mechanism of action. The carboxylic acid salts, relative to parent molecule norfloxacin, displayed two- to fourfold reduction in minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to displaying potent bacteriostatic effect against certain members of ESKAPE pathogens. In vivo treatments revealed that norfloxacin tartrate (SRIN2) reduced MRSA bioburden by greater than 1 log fold relative to parent molecule in the muscle tissue. In silico docking with gyrA of S. aureus showed increased affinity of SRIN2 towards DNA gyrase. The enhanced antibacterial effect of norfloxacin salts could be partially accounted by altered membrane permeability in S. aureus and perturbed membrane integrity in P. aeruginosa. Antibiofilm studies revealed that SRIN2 (norfloxacin tartrate) and SRIN3 (norfloxacin benzoate) exerted potent antibiofilm effect particularly against Gram-negative ESKAPE pathogens. The impaired colonization of both S. aureus and P. aeruginosa due to improved norfloxacin salts was further supported by live-dead imaging. CONCLUSION Norfloxacin carboxylic acid salts can act as potential alternatives in terms of drug resensitization and reuse. SIGNIFICANCE AND IMPACT OF THE STUDY Our study shows that carboxylic acid salts of norfloxacin could be effectively employed to treat both planktonic- and biofilm-based infections caused by select members of ESKAPE pathogens.
Collapse
Affiliation(s)
- R C Lowrence
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India.,Center for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - A Ramakrishnan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - N S Sundaramoorthy
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - A Shyam
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - V Mohan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H M V Subbarao
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - V Ulaganathan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - T Raman
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - A Solomon
- Department of Chemistry, School of Engineering, Dayananda Sagar University, Bangalore, Karnataka, India
| | - S Nagarajan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India.,Center for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
11
|
Lombardo GE, Maggisano V, Celano M, Cosco D, Mignogna C, Baldan F, Lepore SM, Allegri L, Moretti S, Durante C, Damante G, Fresta M, Russo D, Bulotta S, Puxeddu E. Anti- hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer Xenograft. Mol Cancer Ther 2018; 17:1187-1195. [PMID: 29563163 DOI: 10.1158/1535-7163.mct-17-0559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/23/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
The high frequency of hTERT-promoting mutations and the increased expression of hTERT mRNA in anaplastic thyroid cancer (ATC) make TERT a suitable molecular target for the treatment of this lethal neoplasm. In this study, we encapsulated an anti-hTERT oligonucleotide in biocompatible nanoparticles and analyzed the effects of this novel pharmaceutical preparation in preclinical models of ATC. Biocompatible nanoparticles were obtained in an acidified aqueous solution containing chitosan, anti-hTERT oligoRNAs, and poloxamer 188 as a stabilizer. The effects of these anti-hTERT nanoparticles (Na-siTERT) were tested in vitro on ATC cell lines (CAL-62 and 8505C) and in vivo on xenograft tumors obtained by flank injection of CAL-62 cells into SCID mice. The Na-siTERT reduced the viability and migration of CAL-62 and 8505C cells after 48-hour incubation. Intravenous administration (every 48 hours for 13 days) of this encapsulated drug in mice hosting a xenograft thyroid cancer determined a great reduction in the growth of the neoplasm (about 50% vs. untreated animals or mice receiving empty nanoparticles), and decreased levels of Ki67 associated with lower hTERT expression. Moreover, the treatment resulted in minimal invasion of nearby tissues and reduced the vascularity of the xenograft tumor. No signs of toxicity appeared following this treatment. Telomere length was not modified by the Na-siTERT, indicating that the inhibitory effects of neoplasm growth were independent from the enzymatic telomerase function. These findings demonstrate the potential suitability of this anti-TERT nanoparticle formulation as a novel tool for ATC treatment. Mol Cancer Ther; 17(6); 1187-95. ©2018 AACR.
Collapse
Affiliation(s)
- Giovanni E Lombardo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Interdepartmental Service Center, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federica Baldan
- Department of Internal Medicine and Medical Specialties, University of Roma "Sapienza," Roma, Italy
| | - Saverio M Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lorenzo Allegri
- Department of Medical Area, University of Udine, Udine, Italy
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, University of Roma "Sapienza," Roma, Italy
| | | | - Massimo Fresta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Liu X, Zhu L, Ma J, Qiao X, Zhu D, Liu L, Leng X. Target-specific delivery of siRNA into hepatoma cells' cytoplasm by bifunctional carrier peptide. Drug Deliv Transl Res 2017; 7:147-155. [PMID: 27896668 DOI: 10.1007/s13346-016-0348-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is among the most potential approach for the therapy of hepatocellular carcinoma and the major barrier hindering siRNA therapeutics is the low efficiency of delivery to the desired cells. The current study aimed at developing a novel peptide for more efficient hepatoma targeted siRNA delivery, by combining luteinizing hormone-releasing hormone with hepatoma targeting specificity and MPG△NLS with cytoplasm-delivery tendency. The developed bifunctional peptide LHRH-MPG△NLS and siRNA were mixed together and resulted in LHRH-MPG△NLS/siRNA polyplexes through self-assembly. The polyplexes were characterized by agarose gel retardation and dynamic light scatting analysis. Hepatoma targeting specificity was analyzed with the GE IN Cell Analyzer 2000 High-Content Cellular Analysis System after cell transfection, and the effect of RNA interference was detected by RT-PCR. The results demonstrated that LHRH-MPG△NLS was able to assemble with siRNA to form stable and nano-sized peptide/siRNA polyplexes, which could inhibit the expression of the target gene and was essentially non-cytotoxic, as compared with the commercial transfection reagent lipofectamine 2000.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Lin Zhu
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Jingjing Ma
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Xinxiao Qiao
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Dunwan Zhu
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Lanxia Liu
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Xigang Leng
- Lab of Bioengineering, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials, No.236, Baidi Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
13
|
Sun Y, Yang Z, Wang C, Yang T, Cai C, Zhao X, Yang L, Ding P. Exploring the role of peptides in polymer-based gene delivery. Acta Biomater 2017; 60:23-37. [PMID: 28778533 DOI: 10.1016/j.actbio.2017.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. STATEMENT OF SIGNIFICANCE Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency.
Collapse
Affiliation(s)
- Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunxi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
14
|
Liu T, Li W, Lu W, Chen M, Luo M, Zhang C, Li Y, Qin G, Shi D, Xiao B, Qiu H, Yu W, Kang L, Kang T, Huang W, Yu X, Wu X, Deng W. RBFOX3 Promotes Tumor Growth and Progression via hTERT Signaling and Predicts a Poor Prognosis in Hepatocellular Carcinoma. Am J Cancer Res 2017; 7:3138-3154. [PMID: 28839469 PMCID: PMC5566111 DOI: 10.7150/thno.19506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
Activation of the telomere maintenance mechanism is a key hallmark of cancer. Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, which is highly expressed in more than 80% of tumors, including hepatocellular carcinoma (HCC). However, the exact mechanisms by which hTERT is up-regulated in HCCs and promotes tumor growth and progression is not fully understood. The aim of this study was to discover the novel molecular targets that modulate hTERT signaling and HCC growth. In this study, we pulled down and identified RBFOX3 (RNA binding protein fox-1 homolog 3) as a novel hTERT promoter-binding protein in HCC cells using biotin-streptavidin-agarose pull-down and proteomics approach, and validated it as a regulatory factor for hTERT signaling and tumor growth in HCCs. Knockdown of RBFOX3 suppressed the promoter activity and expression of hTERT and consequently inhibited the growth and progression of HCC cells in vitro and in vivo. The suppression of HCC growth mediated by RBFOX3 knockdown could be rescued by hTERT overexpression. Conversely, exogenous overexpression of RBFOX3 activated the promoter activity and expression of hTERT and promoted the growth and progression of HCC cells. Moreover, we found that RBFOX3 interacted with AP-2β to regulate the expression of hTERT. Furthermore, we demonstrated that RBFOX3 expression was higher in the tumor tissues of HCC patients compared to the corresponding paracancer tissues, and was positively correlated with hTERT expression. Kaplan-Meier analysis showed that the HCC patients with high levels of RBFOX3 and hTERT had poor prognosis. Collectively, our data indicate that RBFOX3 promotes HCC growth and progression and predicts a poor prognosis by activating the hTERT signaling, and suggest that the RBFOX3/hTERT pathway may be a potential therapeutic target for HCC patients.
Collapse
|
15
|
Maggisano V, Celano M, Lombardo GE, Lepore SM, Sponziello M, Rosignolo F, Verrienti A, Baldan F, Puxeddu E, Durante C, Filetti S, Damante G, Russo D, Bulotta S. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol Cell Endocrinol 2017; 448:34-40. [PMID: 28288903 DOI: 10.1016/j.mce.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/09/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the hTERT promoter responsible for constitutive telomerase activity are the most frequent genetic alteration detected in anaplastic thyroid cancer (ATC), and proposed as diagnostic and prognostic biomarker in these tumours. In this study we analyzed hTERT expression in a series of human ATCs and investigated the effects of small-interfering RNA-mediated silencing of hTERT on viability and migration and invasive properties of three human ATC cell lines. Expression of hTERT mRNA resulted increased in 8/10 ATCs compared to normal thyroid tissues. Silencing of hTERT in CAL-62, 8505C and SW1736 cells did not modify telomere length but determined a significant decrease (about 50%) of cell proliferation in all cell lines and a great reduction (about 50%) of migration and invasion capacity. These finding demonstrate that hTERT may be considered as a molecular target for ATC treatment.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Federica Baldan
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, 06100 Perugia, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Tai W, Gao X. Functional peptides for siRNA delivery. Adv Drug Deliv Rev 2017; 110-111:157-168. [PMID: 27530388 PMCID: PMC5305781 DOI: 10.1016/j.addr.2016.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022]
Abstract
siRNA is considered as a potent therapeutic agent because of its high specificity and efficiency in suppressing genes that are overexpressed during disease development. For nearly two decades, a significant amount of efforts has been dedicated to bringing the siRNA technology into clinical uses. However, only limited success has been achieved to date, largely due to the lack of a cell type-specific, safe, and efficient delivery technology to carry siRNA into the target cells' cytosol where RNA interference takes place. Among the emerging candidate nanocarriers for siRNA delivery, peptides have gained popularity because of their structural and functional diversity. A variety of peptides have been discovered for their ability to translocate siRNA into living cells via different mechanisms such as direct penetration through the cellular membrane, endocytosis-mediated cell entry followed by endosomolysis, and receptor-mediated uptake. This review is focused on the multiple roles played by peptides in siRNA delivery, such as membrane penetration, endosome disruption, targeting, as well as the combination of these functionalities.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, William H Foege Building N561, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
18
|
RNA interference mediated downregulation of human telomerase reverse transcriptase (hTERT) in LN18 cells. Cytotechnology 2016; 68:2311-2321. [PMID: 27757712 DOI: 10.1007/s10616-016-0025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) gene is a biomarker for the targeted therapy in various cancers. Presence of increased telomerase activity is a common feature of all cancers including glioblastoma. Both RNA and catalytic subunits of hTERT are the target sites for blocking its activity. The current study focuses on the expression of hTERT in glioblastoma and its regulation using two different novel siRNAs (small interfering RNA). Our patient data demonstrated increased expression of hTERT, which could be correlated with carcinogenesis in glioma. In vitro studies in siRNA transfected LN18 cells confirmed significant cell death (p < 0.05) as evidenced by MTT and trypan blue exclusion assay. These results were further supported by flow cytometry data, which showed significant increase in early and late apoptosis. The hTERT mRNA expression was effectively downregulated by 45 and 39 % with siRNA1 and siRNA2, respectively. These results were further confirmed by immunoblotting analysis (p < 0.05). Our results suggest that both the siRNAs effectively down regulated the expression of hTERT at mRNA and protein levels, thereby decreasing cell viability and proliferation rate. Hence siRNA mediated downregulation of hTERT could be a potential therapeutic avenue in glioblastoma.
Collapse
|
19
|
He H, Sun L, Ye J, Liu E, Chen S, Liang Q, Shin MC, Yang VC. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J Control Release 2016; 240:67-76. [DOI: 10.1016/j.jconrel.2015.10.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
|