1
|
Krasikova YS, Lavrik OI, Rechkunova NI. The XPA Protein-Life under Precise Control. Cells 2022; 11:cells11233723. [PMID: 36496984 PMCID: PMC9739396 DOI: 10.3390/cells11233723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
2
|
Galande AA, Saijo M, Ghaskadbi SS, Ghaskadbi S. Xeroderma pigmentosum A homolog from Hydra partially complements DNA repair defect in human XPA-deficient cells. J Biosci 2021. [DOI: 10.1007/s12038-021-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
4
|
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ. A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res 2020; 48:2173-2188. [PMID: 31925419 PMCID: PMC7038936 DOI: 10.1093/nar/gkz1231] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/25/2023] Open
Abstract
The XPA protein functions together with the single-stranded DNA (ssDNA) binding protein RPA as the central scaffold to ensure proper positioning of repair factors in multi-protein nucleotide excision repair (NER) machinery. We previously determined the structure of a short motif in the disordered XPA N-terminus bound to the RPA32C domain. However, a second contact between the XPA DNA-binding domain (XPA DBD) and the RPA70AB tandem ssDNA-binding domains, which is likely to influence the orientation of XPA and RPA on the damaged DNA substrate, remains poorly characterized. NMR was used to map the binding interfaces of XPA DBD and RPA70AB. Combining NMR and X-ray scattering data with comprehensive docking and refinement revealed how XPA DBD and RPA70AB orient on model NER DNA substrates. The structural model enabled design of XPA mutations that inhibit the interaction with RPA70AB. These mutations decreased activity in cell-based NER assays, demonstrating the functional importance of XPA DBD-RPA70AB interaction. Our results inform ongoing controversy about where XPA is bound within the NER bubble, provide structural insights into the molecular basis for malfunction of disease-associated XPA missense mutations, and contribute to understanding of the structure and mechanical action of the NER machinery.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Norie Sugitani
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - John J Cordoba
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Kateryna V Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Rémy A Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Daniel Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Orlando D Schärer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37240-7917, USA
| |
Collapse
|
5
|
New structural insights into the recognition of undamaged splayed-arm DNA with a single pair of non-complementary nucleotides by human nucleotide excision repair protein XPA. Int J Biol Macromol 2020; 148:466-474. [PMID: 31962067 DOI: 10.1016/j.ijbiomac.2020.01.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
XPA (Xeroderma pigmentosum complementation group A) is a core scaffold protein that plays significant roles in DNA damage verification and recruiting downstream endonucleases in the nucleotide excision repair (NER) pathway. Here, we present the 2.81 Å resolution crystal structure of the DNA-binding domain (DBD) of human XPA in complex with an undamaged splayed-arm DNA substrate with a single pair of non-complementary nucleotides. The structure reveals that two XPA molecules bind to one splayed-arm DNA with a 10-bp duplex recognition motif in a non-sequence-specific manner. XPA molecules bind to both ends of the DNA duplex region with a characteristic β-hairpin. A conserved tryptophan residue Trp175 packs against the last base pair of DNA duplex and stabilizes the conformation of the characteristic β-hairpin. Upon DNA binding, the C-terminal last helix of XPA would shift towards the minor groove of the DNA substrate for better interaction. Notably, human XPA is able to bind to the undamaged DNA duplex without any kinks, and XPA-DNA binding does not bend the DNA substrate obviously. This study provides structural basis for the binding mechanism of XPA to the undamaged splayed-arm DNA with a single pair of non-complementary nucleotides.
Collapse
|
6
|
Structural characterization of the redefined DNA-binding domain of human XPA. Biochem Biophys Res Commun 2019; 514:985-990. [DOI: 10.1016/j.bbrc.2019.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
|
7
|
Pradhan S, Das P, Mattaparthi VSK. Characterizing the Binding Interactions between DNA-Binding Proteins, XPA and XPE: A Molecular Dynamics Approach. ACS OMEGA 2018; 3:15442-15454. [PMID: 31458200 PMCID: PMC6643373 DOI: 10.1021/acsomega.8b01793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/01/2018] [Indexed: 05/23/2023]
Abstract
The scaffold nature of Xeroderma pigmentosum complementation group A (XPA) protein makes it an important member of nucleotide excision repair (NER) that removes bulky DNA lesions with the help of various protein-protein interactions (PPI) and DNA-protein interactions. However, many structural insights of XPA's interaction and the binding patterns with other NER proteins are yet to be understood. Here, we have studied one such crucial PPI of XPA with another NER protein, Xeroderma pigmentosum complementation group A (XPE), by using the previously identified binding site of XPA (residues 185-226) in the Assisted Model Building With Energy Refinement force-field-mediated dynamic system. We studied the relationship between XPA185-226-XPE complex using three different docked models. The major residues observed in all of the models that were responsible for the PPI of this complex were Arg20, Arg47, Asp51, and Leu57 from XPE and the residues Leu191, Gln192, Val193, Trp194, Glu198, Glu202, Glu205, Arg207, Glu209, Gln216, and Phe219 from XPE185-226. During the simulation study, the orientation of XPA was also noted to be changed by almost 180° in models 1 and 3, which remain unchanged in model 2, indicating that XPA interacts with XPE with its N-terminal end facing downward and C-terminal end facing upward. The same was concurrent with the binding of DNA-binding domain region of XPA (aa98-239) with XPE. The N-terminal of XPE was stretched for accommodating XPA. Using the per-residue energy decomposition analysis for the interface residues of all models, the binding affinity between these proteins were found to be dependent on R20, R47, and L57 of XPE and the residues L191, V193, W194, E198, E202, E205, R207, and F219 of XPA. The net binding free energy of the XPA185-226-XPE protein complex was found to be -48.3718 kcal mol-1 for model 1, -49.09 kcal mol-1 for model 2, and -56.51 kcal mol-1 for model 3.
Collapse
|
8
|
Aldehyde-mediated protein degradation is responsible for the inhibition of nucleotide excision repair by cigarette sidestream smoke. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:42-50. [DOI: 10.1016/j.mrgentox.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
|
9
|
Pradhan S, Sarma H, Mattaparthi VSK. Investigation of the probable homo-dimer model of the Xeroderma pigmentosum complementation group A (XPA) protein to represent the DNA-binding core. J Biomol Struct Dyn 2018; 37:3322-3336. [PMID: 30205752 DOI: 10.1080/07391102.2018.1517051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Xeroderma pigmentosum complementation group A (XPA) protein functions as a primary damage verifier and as a scaffold protein in nucleotide excision repair (NER) in all higher organisms. New evidence of XPA's existence as a dimer and the redefinition of its DNA-binding domain (DBD) raises new questions regarding the stability and functional position of XPA in NER. Here, we have investigated XPA's dimeric status with respect to its previously defined DBD (XPA98-219) as well as with its redefined DBD (XPA98-239). We studied the stability of XPA98-210 and XPA98-239 homo-dimer systems using all-atom molecular dynamics simulation, and we have also characterized the protein-protein interactions (PPI) of these two homo-dimeric forms of XPA. After conducting the root mean square deviation (RMSD) analyses, it was observed that the XPA98-239 homo-dimer has better stability than XPA98-210. It was also found that XPA98-239 has a larger number of hydrogen bonds, salt bridges, and hydrophobic interactions than the XPA98-210 homo-dimer. We further found that Lys, Glu, Gln, Asn, and Arg residues shared the major contribution toward the intermolecular interactions in XPA homo-dimers. The binding free energy (BFE) analysis, which used the molecular mechanics Poisson-Boltzmann method (MM-PBSA) and the generalized Born and surface area continuum solvation model (GBSA) for both XPA homo-dimers, also substantiated the positive result in favor of the stability of the XPA98-239 homo-dimer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushmita Pradhan
- a Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur , India
| | - Himakshi Sarma
- a Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur , India
| | - Venkata Satish Kumar Mattaparthi
- a Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur , India
| |
Collapse
|
10
|
Yang G, Ibuki Y. α,β-Unsaturated Aldehyde-Induced Delays in Nucleotide Excision Repair and the Contribution of Reactive Oxygen Species. Chem Res Toxicol 2018; 31:145-155. [DOI: 10.1021/acs.chemrestox.7b00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang Yang
- Graduate Division of Nutritional
and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional
and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Pradhan S, Mattaparthi VSK. Structural dynamics and interactions of Xeroderma pigmentosum complementation group A (XPA98–210) with damaged DNA. J Biomol Struct Dyn 2017; 36:3341-3353. [DOI: 10.1080/07391102.2017.1388285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sushmita Pradhan
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| |
Collapse
|
12
|
Gavande NS, VanderVere-Carozza P, Mishra AK, Vernon TL, Pawelczak KS, Turchi JJ. Design and Structure-Guided Development of Novel Inhibitors of the Xeroderma Pigmentosum Group A (XPA) Protein-DNA Interaction. J Med Chem 2017; 60:8055-8070. [PMID: 28933851 DOI: 10.1021/acs.jmedchem.7b00780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
XPA is a unique and essential protein required for the nucleotide excision DNA repair pathway and represents a therapeutic target in oncology. Herein, we are the first to develop novel inhibitors of the XPA-DNA interaction through structure-guided drug design efforts. Ester derivatives of the compounds 1 (X80), 22, and 24 displayed excellent inhibitory activity (IC50 of 0.82 ± 0.18 μM and 1.3 ± 0.22 μM, respectively) but poor solubility. We have synthesized novel amide derivatives that retain potency and have much improved solubility. Furthermore, compound 1 analogs exhibited good specificity for XPA over RPA (replication protein A), another DNA-binding protein that participates in the nucleotide excision repair (NER) pathway. Importantly, there were no significant interactions observed by the X80 class of compounds directly with DNA. Molecular docking studies revealed a mechanistic model for the interaction, and these studies could serve as the basis for continued analysis of structure-activity relationships and drug development efforts of this novel target.
Collapse
Affiliation(s)
- Navnath S Gavande
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Pamela VanderVere-Carozza
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Akaash K Mishra
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Tyler L Vernon
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Katherine S Pawelczak
- NERx Biosciences , 212 W 10th Street, Suite A480, Indianapolis, Indiana 46202, United States
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,NERx Biosciences , 212 W 10th Street, Suite A480, Indianapolis, Indiana 46202, United States
| |
Collapse
|
13
|
Sugitani N, Voehler MW, Roh MS, Topolska-Woś AM, Chazin WJ. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates. J Biol Chem 2017; 292:16847-16857. [PMID: 28860187 DOI: 10.1074/jbc.m117.800078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients.
Collapse
Affiliation(s)
- Norie Sugitani
- From the Departments of Chemistry and.,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-7917
| | - Markus W Voehler
- From the Departments of Chemistry and.,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-7917
| | | | - Agnieszka M Topolska-Woś
- the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-7917.,Biochemistry and
| | - Walter J Chazin
- From the Departments of Chemistry and .,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-7917.,Biochemistry and
| |
Collapse
|
14
|
Ebert C, Simon N, Schneider S, Carell T. Structural Insights into the Recognition of N
2
-Aryl- and C8-Aryl DNA Lesions by the Repair Protein XPA/Rad14. Chembiochem 2017; 18:1379-1382. [DOI: 10.1002/cbic.201700169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Charlotte Ebert
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Nina Simon
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| |
Collapse
|
15
|
Hilton BA, Liu J, Cartwright BM, Liu Y, Breitman M, Wang Y, Jones R, Tang H, Rusinol A, Musich PR, Zou Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 2017; 31:3882-3893. [PMID: 28515154 DOI: 10.1096/fj.201700014r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin). We previously reported that XPA mislocalized to the progerin-induced DNA double-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation, DNA damage responses, and early replication arrest in HGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNA at replication forks. Our results suggest that although PCNA is much more competitive than XPA in binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPA-replication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerin-induced genome instability and accelerated replicative senescence in HGPS.-Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., Zou, Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.
Collapse
Affiliation(s)
- Benjamin A Hilton
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Brian M Cartwright
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yiyong Liu
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Maya Breitman
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Youjie Wang
- Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rowdy Jones
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Hui Tang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Antonio Rusinol
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yue Zou
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA;
| |
Collapse
|
16
|
Musich PR, Li Z, Zou Y. Xeroderma Pigmentosa Group A (XPA), Nucleotide Excision Repair and Regulation by ATR in Response to Ultraviolet Irradiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:41-54. [PMID: 29124689 DOI: 10.1007/978-3-319-56017-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sensitivity of Xeroderma pigmentosa (XP) patients to sunlight has spurred the discovery and genetic and biochemical analysis of the eight XP gene products (XPA-XPG plus XPV) responsible for this disorder. These studies also have served to elucidate the nucleotide excision repair (NER) process, especially the critical role played by the XPA protein. More recent studies have shown that NER also involves numerous other proteins normally employed in DNA metabolism and cell cycle regulation. Central among these is ataxia telangiectasia and Rad3-related (ATR), a protein kinase involved in intracellular signaling in response to DNA damage, especially DNA damage-induced replicative stresses. This review summarizes recent findings on the interplay between ATR as a DNA damage signaling kinase and as a novel ligand for intrinsic cell death proteins to delay damage-induced apoptosis, and on ATR's regulation of XPA and the NER process for repair of UV-induced DNA adducts. ATR's regulatory role in the cytosolic-to-nuclear translocation of XPA will be discussed. In addition, recent findings elucidating a non-NER role for XPA in DNA metabolism and genome stabilization at ds-ssDNA junctions, as exemplified in prematurely aging progeroid cells, also will be reviewed.
Collapse
Affiliation(s)
- Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Department of Cancer Genetics and Epigenetics, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91007, USA
| | - Yue Zou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
17
|
Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency. PLoS One 2016; 11:e0157784. [PMID: 27327897 PMCID: PMC4915676 DOI: 10.1371/journal.pone.0157784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER.
Collapse
|
18
|
Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair. J Mol Model 2016; 22:156. [PMID: 27307058 DOI: 10.1007/s00894-016-3017-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn(2+)-chelated Zn-finger domain of XPA center core portion (i.e., XPA98-210) is the foundation of its biological functionality, while the displacement of the Zn(2+) by toxic metal ions (such as Ni(2+), a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98-210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98-210 Zn-finger after the substitution of Zn(2+) by Ni(2+). The results showed that Ni(2+) dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98-210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98-210's Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported structural biology information. Thus, we derived a putative cytotoxic mechanism associated with the nickel ion, where the Ni(2+) disrupts the conformation of the XPA Zn-finger, directly weakening its interaction with RPA70N, and thus lowering the effectiveness of the NER process. In sum, this work not only provides a theoretical insight into the multi-protein interactions involved in the NER process and potential cytotoxic mechanism associated with Ni(2+) binding in XPA, but may also facilitate rational anti-cancer drug design based on the NER mechanism.
Collapse
|
19
|
Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. XPA: A key scaffold for human nucleotide excision repair. DNA Repair (Amst) 2016; 44:123-135. [PMID: 27247238 DOI: 10.1016/j.dnarep.2016.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) is essential for removing many types of DNA lesions from the genome, yet the mechanisms of NER in humans remain poorly understood. This review summarizes our current understanding of the structure, biochemistry, interaction partners, mechanisms, and disease-associated mutations of one of the critical NER proteins, XPA.
Collapse
Affiliation(s)
- Norie Sugitani
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Robert M Sivley
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Kelly E Perry
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - John A Capra
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States
| | - Walter J Chazin
- Departments of Biochemistry, Biological Sciences, Biomedical Informatics, Chemistry, and Computer Science, and Vanderbilt Genetics Institute and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917, United States.
| |
Collapse
|
20
|
Fadda E. Role of the XPA protein in the NER pathway: A perspective on the function of structural disorder in macromolecular assembly. Comput Struct Biotechnol J 2015; 14:78-85. [PMID: 26865925 PMCID: PMC4710682 DOI: 10.1016/j.csbj.2015.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Lack of structure is often an essential functional feature of protein domains. The coordination of macromolecular assemblies in DNA repair pathways is yet another task disordered protein regions are highly implicated in. Here I review the available experimental and computational data and within this context discuss the functional role of structure and disorder in one of the essential scaffolding proteins in the nucleotide excision repair (NER) pathway, namely Xeroderma pigmentosum complementation group A (XPA). From the analysis of the current knowledge, in addition to protein–protein docking and secondary structure prediction results presented for the first time herein, a mechanistic framework emerges, where XPA builds the NER pre-incision complex in a modular fashion, as “beads on a string”, where the protein–protein interaction “beads”, or modules, are interconnected by disordered link regions. This architecture is ideal to avoid the expected steric hindrance constraints of the DNA expanded bubble. Finally, the role of the XPA structural disorder in binding affinity modulation and in the sequential binding of NER core factors in the pre-incision complex is also discussed.
Collapse
Affiliation(s)
- Elisa Fadda
- Department of Chemistry, Maynooth University, Maynooth, Kildare, Ireland
| |
Collapse
|