1
|
Ni H, Xi J, Tang J, Yan Y, Chu Y, Zhou J. Therapeutic Potential of Extracellular Vesicles from Different Stem Cells in Chronic Wound Healing. Stem Cell Rev Rep 2023; 19:1596-1614. [PMID: 37178227 DOI: 10.1007/s12015-023-10540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Wound healing has long been a complex problem, especially in chronic wounds. Although debridement, skin grafting, and antimicrobial dressings have been used to treat chronic wounds, their treatment period is long, expensive, and has specific rejection reactions. The poor treatment results of traditional methods have caused psychological stress to patients and a substantial economic burden to society. Extracellular vesicles (EVs) are nanoscale vesicles secreted by cells. They play an essential role in intercellular communication. Numerous studies have confirmed that stem cell-derived extracellular vesicles (SC-EVs) can inhibit overactive inflammation, induce angiogenesis, promote re-epithelization, and reduce scar formation. Therefore, SC-EVs are expected to be a novel cell-free strategy for chronic wound treatment. We first summarize the pathological factors that hinder wound healing and discuss how SC-EVs accelerate chronic wound repair. And then, we also compare the advantages and disadvantages of different SC-EVs for chronic wound treatment. Finally, we discuss the limitations of SC-EVs usage and provide new thoughts for future SC-EVs research in chronic wound treatment.
Collapse
Affiliation(s)
- Haoxi Ni
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianbo Xi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
| | - Jianjun Tang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of General Surgery, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Ying Chu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| | - Jing Zhou
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| |
Collapse
|
2
|
Romaniyanto FNU, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Adipose-Derived Stem Cells (ASCs) for Regeneration of Intervertebral Disc Degeneration: Review Article. STEM CELLS AND CLONING: ADVANCES AND APPLICATIONS 2022; 15:67-76. [DOI: 10.2147/sccaa.s379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
|
3
|
Hsiao HY, Lai CY, Liu JW, Yu YY, Chang FCS, Huang JJ. Fate of Fat Grafting In Vivo and In Vitro: Does the Suction-Assisted Lipectomy Device Matter? Aesthet Surg J 2021; 41:NP1323-NP1336. [PMID: 34043750 DOI: 10.1093/asj/sjab231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recently, there has been increasing research interest in identifying the effect of liposuction procedures on fat graft survival in order to clarify whether different harvest techniques affect the quality of fat grafts. OBJECTIVES The aim of this study was to investigate the effect of 2 liposuction methods on the survival and regeneration potential of grafted fat tissue. The proliferation and differentiation potentials of adipose-derived stem cells (ASCs) isolated by both methods was also investigated. METHODS Fat grafts were collected from patients who underwent liposuction procedures by 2 different methods: traditional suction-assisted liposuction (TSAL) and vibration amplification of sound energy at resonance (VASER). One portion of the lipoaspirates was implanted into the subcutaneous layer of nu mice for 4 and 12 weeks. ASCs were isolated from the other portion of the lipoaspirate and subjected to proliferation and differentiation assays. RESULTS Although in vivo fat grafting presented similar adipose tissue survival for the 2 different liposuction methods, more angiogenesis and less fibrosis was observed in the VASER group based on histologic evaluation. Furthermore, VASER-derived ASCs presented better quality in terms of cell differentiation capacity. CONCLUSIONS The in vivo study confirmed better graft angiogenesis with less inflammation, apoptosis, and scar formation in the VASER group. ASCs harvested with VASER exhibited increased differentiation capacity compared with those obtained by TSAL, and represent an excellent source for fat grafting and regenerative medicine.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Jia-Wei Liu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Yuan Yu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Frank Chun-Shin Chang
- Division of Craniofacial Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C. First immunohistochemical evidence of human tendon repair following stem cell injection: A case report and review of literature. World J Stem Cells 2021; 13:944-970. [PMID: 34367486 PMCID: PMC8316863 DOI: 10.4252/wjsc.v13.i7.944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current clinical treatment options for symptomatic, partial-thickness rotator cuff tear (sPTRCT) offer only limited potential for true tissue healing and improvement of clinical results. In animal models, injections of adult stem cells isolated from adipose tissue into tendon injuries evidenced histological regeneration of tendon tissue. However, it is unclear whether such beneficial effects could also be observed in a human tendon treated with fresh, uncultured, autologous, adipose derived regenerative cells (UA-ADRCs). A specific challenge in this regard is that UA-ADRCs cannot be labeled and, thus, not unequivocally identified in the host tissue. Therefore, histological regeneration of injured human tendons after injection of UA-ADRCs must be assessed using comprehensive, immunohistochemical and microscopic analysis of biopsies taken from the treated tendon a few weeks after injection of UA-ADRCs.
CASE SUMMARY A 66-year-old patient suffered from sPTRCT affecting the right supraspinatus and infraspinatus tendon, caused by a bicycle accident. On day 18 post injury [day 16 post magnetic resonance imaging (MRI) examination] approximately 100 g of abdominal adipose tissue was harvested by liposuction, from which approximately 75 × 106 UA-ADRCs were isolated within 2 h. Then, UA-ADRCs were injected (controlled by biplanar X-ray imaging) adjacent to the injured supraspinatus tendon immediately after isolation. Despite fast clinical recovery, a follow-up MRI examination 2.5 mo post treatment indicated the need for open revision of the injured infraspinatus tendon, which had not been treated with UA-ADRCs. During this operation, a biopsy was taken from the supraspinatus tendon at the position of the injury. A comprehensive, immunohistochemical and microscopic analysis of the biopsy (comprising 13 antibodies) was indicative of newly formed tendon tissue.
CONCLUSION Injection of UA-ADRCs can result in regeneration of injured human tendons by formation of new tendon tissue.
Collapse
Affiliation(s)
- Eckhard Alt
- Chairman of the Board, Isarklinikum Munich, Munich 80331, Germany
| | - Ralf Rothoerl
- Department of Spine Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Matthias Hoppert
- Department for Orthopedics and Trauma Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Hans-Georg Frank
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Tobias Wuerfel
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Christopher Alt
- Director of Science and Research, InGeneron GmbH, Munich 80331, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| |
Collapse
|
5
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
6
|
Müller GA, Ussar S, Tschöp MH, Müller TD. Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mech Ageing Dev 2020; 190:111307. [PMID: 32628941 DOI: 10.1016/j.mad.2020.111307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department Biology I, Genetics, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany.
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany; German Center for Diabetes Research (DZD), Oberschleissheim, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
7
|
Taha S, Saller MM, Haas E, Farkas Z, Aszodi A, Giunta R, Volkmer E. Adipose-derived stem/progenitor cells from lipoaspirates: A comparison between the Lipivage200-5 liposuction system and the Body-Jet liposuction system. J Plast Reconstr Aesthet Surg 2020; 73:166-175. [DOI: 10.1016/j.bjps.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
|
8
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
10
|
Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci 2018; 19:ijms19071897. [PMID: 29958391 PMCID: PMC6073397 DOI: 10.3390/ijms19071897] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Considering the increasing interest in adipose-derived stem cells (ASCs) in regenerative medicine, optimization of methods aimed at isolation, characterization, expansion and evaluation of differentiation potential is critical to ensure (a) the quality of stem cells also in terms of genetic stability; (b) the reproducibility of beneficial effects; and (c) the safety of their use. Numerous studies have been conducted to understand the mechanisms that regulate ASC proliferation, growth and differentiation, however standard protocols about harvesting and processing techniques are not yet defined. It is also important to note that some steps in the procedures of harvesting and/or processing have been reported to affect recovery and/or the physiology of ASCs. Even considering the great opportunity that the ASCs provide for the identification of novel molecular targets for new or old drugs, the definition of homogeneous preparation methods that ensure adequate quality assurance and control, in accordance with current GMPs (good manufacturing practices), is required. Here, we summarize the literature reports to provide a detailed overview of the methodological issues underlying human ASCs isolation, processing, characterization, expansion, differentiation techniques, recalling at the same time their basilar principles, advantages and limits, in particular focusing on how these procedures could affect the ASC quality, functionality and plasticity.
Collapse
|
11
|
Bajek A, Gurtowska N, Olkowska J, Maj M, Kaźmierski Ł, Bodnar M, Marszałek A, Dębski R, Drewa T. Does the Harvesting Technique Affect the Properties of Adipose-Derived Stem Cells?-The Comparative Biological Characterization. J Cell Biochem 2017; 118:1097-1107. [DOI: 10.1002/jcb.25724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Natalia Gurtowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Joanna Olkowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Małgorzata Maj
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering; Nicolaus Copernicus University; Karlowicza Str 24 85-092 Bydgoszcz Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Robert Dębski
- Department of Experimental Oncology; Nicolaus Copernicus University; M. Sklodowskiej-Curie Str 9 85-094 Bydgoszcz Poland
| | - Tomasz Drewa
- Department of Urology; Nicolaus Copernicus Hospital; Batorego Str 17-19 87-100 Toruń Poland
- Department of Urology; Nicolaus Copernicus University; Sklodowskiej Str 9 85-090 Bydgoszcz Poland
| |
Collapse
|
12
|
Dessels C, Potgieter M, Pepper MS. Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion. Front Cell Dev Biol 2016; 4:115. [PMID: 27800478 PMCID: PMC5065960 DOI: 10.3389/fcell.2016.00115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing practices (GMPs) and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.
Collapse
Affiliation(s)
- Carla Dessels
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| | - Marnie Potgieter
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| | - Michael S Pepper
- South African Medical Research Council, Extramural Unit for Stem Cell Research and Therapy, and Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria, South Africa
| |
Collapse
|
13
|
|
14
|
Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous Fat Grafting: The Science Behind the Surgery. Aesthet Surg J 2016; 36:488-96. [PMID: 26961989 DOI: 10.1093/asj/sjw004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An invaluable part of the plastic surgeon's technical arsenal for soft tissue contouring, fat grafting continues to be plagued by unpredictable outcomes, resulting in either reoperation and/or patient dissatisfaction. Thus, extensive research has been conducted into the effects of adipose tissue procurement, processing, and placement on fat graft quality at both the cellular level and in terms of overall volume retention. Herein, we present an overview of the vast body of literature in these areas, with additional discussion of cell-assisted lipotransfer as a therapy to improve volume retention, and on the controversial use of autologous fat in the setting of prior irradiation.
Collapse
Affiliation(s)
- Elizabeth R Zielins
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth A Brett
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Michael T Longaker
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Derrick C Wan
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Bony C, Cren M, Domergue S, Toupet K, Jorgensen C, Noël D. Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties. Front Immunol 2016; 6:655. [PMID: 26834736 PMCID: PMC4716140 DOI: 10.3389/fimmu.2015.00655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSC) are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the past years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF) or adipose mesenchymal stromal cells (ASC). The objective of the present study was to compare and qualify for clinical use the ASC obtained from fat isolated with the manual or the Bodyjet® water-jet-assisted procedure. Although the initial number of cells obtained after collagenase digestion was higher with the manual procedure, the percentage of dead cells, the number of colony forming unit-fibroblast and the phenotype of cells were identical in the SVF at isolation (day 0) and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was, however, not observed in vivo using the delayed-type hypersensitivity (DTH) model. Our data, therefore, indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs.
Collapse
Affiliation(s)
- Claire Bony
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Mailys Cren
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Sophie Domergue
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Chirurgie Plastique Reconstructrice et Esthétique, Hôpital Gui de Chauliac, Montpellier, France
| | - Karine Toupet
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France
| | - Christian Jorgensen
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Service d'Immuno-Rhumatologie Thérapeutique, Hôpital Lapeyronie, Montpellier, France
| | - Danièle Noël
- U1183, INSERM, Hôpital Saint-Eloi, Montpellier, France; UFR de Médecine, Montpellier University, Montpellier, France; Service d'Immuno-Rhumatologie Thérapeutique, Hôpital Lapeyronie, Montpellier, France
| |
Collapse
|