1
|
Cheng B, Tang YL, Gou YF, Li JY, Xu TH, Zhu L. Efficient expression and purification of rat CRP in Pichia pastoris. Front Immunol 2024; 15:1465365. [PMID: 39253072 PMCID: PMC11381232 DOI: 10.3389/fimmu.2024.1465365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
C-reactive protein (CRP) plays a crucial role in the diagnosis and monitoring of the non-specific acute phase response in humans. In contrast, rat CRP (rCRP) is an atypical acute-phase protein that possesses unique features, such as a possible incapacity to trigger the complement system and markedly elevated baseline plasma concentrations. To facilitate in vitro studies on these unique characteristics, obtaining high-quality pure rCRP is essential. Here we explored various strategies for rCRP purification, including direct isolation from rat plasma and recombinant expression in both prokaryotic and eukaryotic systems. Our study optimized the recombinant expression system to enhance the secretion and purification efficiency of rCRP. Compared to traditional purification methods, we present a streamlined and effective approach for the expression and purification of rCRP in the Pichia pastoris system. This refined methodology offers significant improvements in the efficiency and effectiveness of rCRP purification, thereby facilitating further structural and functional studies on rCRP.
Collapse
Affiliation(s)
- Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Fei Gou
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Yi Li
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Pei P, Aslam M, Wang H, Ye P, Li T, Liang H, Lin Q, Chen W, Du H. Diversity and ecological function of urease-producing bacteria in the cultivation environment of Gracilariopsis lemaneiformis. MICROBIAL ECOLOGY 2024; 87:35. [PMID: 38261068 PMCID: PMC10806000 DOI: 10.1007/s00248-023-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Urease-producing bacteria (UPB) provide inorganic nitrogen for primary producers by hydrolyzing urea, and play an important role in marine nitrogen cycle. However, there is still an incomplete understanding of UPB and their ecological functions in the cultivation environment of the red macroalgae Gracilariopsis lemaneiformis. This study comprehensively analyzed the diversity of culturable UPB and explored their effects on urea uptake by G. lemaneiformis. A total of 34 isolates belonging to four main bacterial phyla i.e. (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were identified through 16S rRNA sequencing and were screened for UPB by urea agar chromogenic medium assay and ureC gene cloning. Our data revealed that only 8 strains contained urease. All of these UPB exhibited different urease activities, which were determined by the Berthelot reaction colorimetry assay. Additionally, the UPB strain (G13) isolated from G. lemaneiformis with higher urease activity was selected for co-culture with G. lemaneiformis to explore its role in promoting or inhibiting nitrogen uptake by macroalgae. The results showed a significant increase in urea consumption in the culture medium and the total cellular nitrogen in G. lemaneiformis in the UPB-co culture group compared to the sterile group. This suggests that the selected UPB strain positively influences nitrogen uptake by G. lemaneiformis. Similarly, isotopic assays revealed that the δ15N content of G. lemaneiformis was significantly higher in the UPB-co culture than in the control group, where δ15N-urea was the only nitrogen source in the culture medium. This indicates that the UPB helped G. lemaneiformis to absorb more nitrogen from urea. Moreover, the highest content of δ15N was found in G. lemaneiformis with epiphytic bacteria compared to sterilized (i.e. control), showing that epiphytic bacteria, along with UPB, have a compound effect in helping G. lemaneiformis absorb more nitrogen from urea. Taken together, these results provide unique insight into the ecological role of UPB and suggest that urease from macroalgae environment-associated bacteria might be an important player in marine nitrogen cycling.
Collapse
Affiliation(s)
- Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Faculty of Marine Sciences, LUAWMS, Lasbela, 90150, Pakistan
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou, 515063, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Guardia AE, Wagner A, Busalmen JP, Di Capua C, Cortéz N, Beligni MV. The draft genome of Andean Rhodopseudomonas sp. strain AZUL predicts genome plasticity and adaptation to chemical homeostasis. BMC Microbiol 2022; 22:297. [PMID: 36494611 PMCID: PMC9733117 DOI: 10.1186/s12866-022-02685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Rhodopseudomonas comprises purple non-sulfur bacteria with extremely versatile metabolisms. Characterization of several strains revealed that each is a distinct ecotype highly adapted to its specific micro-habitat. Here we present the sequencing, genomic comparison and functional annotation of AZUL, a Rhodopseudomonas strain isolated from a high altitude Andean lagoon dominated by extreme conditions and fluctuating levels of chemicals. Average nucleotide identity (ANI) analysis of 39 strains of this genus showed that the genome of AZUL is 96.2% identical to that of strain AAP120, which suggests that they belong to the same species. ANI values also show clear separation at the species level with the rest of the strains, being more closely related to R. palustris. Pangenomic analyses revealed that the genus Rhodopseudomonas has an open pangenome and that its core genome represents roughly 5 to 12% of the total gene repertoire of the genus. Functional annotation showed that AZUL has genes that participate in conferring genome plasticity and that, in addition to sharing the basal metabolic complexity of the genus, it is also specialized in metal and multidrug resistance and in responding to nutrient limitation. Our results also indicate that AZUL might have evolved to use some of the mechanisms involved in resistance as redox reactions for bioenergetic purposes. Most of those features are shared with strain AAP120, and mainly involve the presence of additional orthologs responsible for the mentioned processes. Altogether, our results suggest that AZUL, one of the few bacteria from its habitat with a sequenced genome, is highly adapted to the extreme and changing conditions that constitute its niche.
Collapse
Affiliation(s)
- Aisha E. Guardia
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Agustín Wagner
- grid.10814.3c0000 0001 2097 3211Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan P. Busalmen
- grid.473319.b0000 0004 0461 9871Ingeniería de Interfases y Bioprocesos, Instituto de Tecnología de Materiales (INTEMA-CONICET-UNMdP), Mar del Plata, Argentina
| | - Cecilia Di Capua
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Néstor Cortéz
- grid.501777.30000 0004 0638 1836Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Beligni
- grid.412221.60000 0000 9969 0902Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
4
|
Konzock O, Zaghen S, Fu J, Kerkhoven EJ. Urea is a drop-in nitrogen source alternative to ammonium sulphate in Yarrowia lipolytica. iScience 2022; 25:105703. [PMID: 36567708 PMCID: PMC9772842 DOI: 10.1016/j.isci.2022.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Media components, including the nitrogen source, are significant cost factors in cultivation processes. The nitrogen source also influences cell behavior and production performance. Ammonium sulfate is a widely used nitrogen source for microorganisms' cultivation. Urea is a sustainable and cheap alternative nitrogen source. We investigated the influence of urea as a nitrogen source compared to ammonium sulfate by cultivating phenotypically different Yarrowia lipolytica strains in chemostats under carbon or nitrogen limitation. We found no significant coherent changes in growth and lipid production. RNA sequencing revealed no significant concerted changes in the transcriptome. The genes involved in urea uptake and degradation are not upregulated on a transcriptional level. Our findings support urea usage, indicating that previous metabolic engineering efforts where ammonium sulfate was used are likely translatable to the usage of urea and can ease the way for urea as a cheap and sustainable nitrogen source in more applications.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jing Fu
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden,Corresponding author
| |
Collapse
|
5
|
Funck D, Sinn M, Fleming JR, Stanoppi M, Dietrich J, López-Igual R, Mayans O, Hartig JS. Discovery of a Ni 2+-dependent guanidine hydrolase in bacteria. Nature 2022; 603:515-521. [PMID: 35264792 DOI: 10.1038/s41586-022-04490-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.
Collapse
Affiliation(s)
- D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Stanoppi
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J Dietrich
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - R López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C, Seville, Spain
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
6
|
Cheng B, Wu D, Wu K, Huang XP, Lv JM, Ji SR, Zhu L. Purification of Recombinant Mouse C-Reactive Protein from Pichia Pastoris GS115 by Nickel Chelating Sepharose Fast-Flow Affinity Chromatography and P-Aminophenyl Phosphoryl Choline Agarose Resin Affinity Chromatography in Tandem. J Chromatogr Sci 2021; 60:750-759. [PMID: 34625786 DOI: 10.1093/chromsci/bmab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/13/2022]
Abstract
C-reactive protein (CRP) is a circulating marker of inflammation yet with ill-defined biological functions. This is partly due to the uncharacterized activities of endogenous CRP in mice, the major animal model used to define protein function. The hurdles for purification and characterization of mouse CRP are its low circulating levels and the lack of specific antibodies. To clear these hurdles, here we developed an efficient expression system by constructing recombinant Pichia pastoris cells for secretion of native conformation mouse CRP. The recombinant expression of mouse CRP in Escherichia coli failed to yield sufficient amount of native protein, reflecting the importance of post-translational modification of glycosylation in aiding proper folding. By contrast, sufficient amount of native mouse CRP was successfully purified from P. pastoris. Preliminary purification was performed by Nickel Chelating Sepharose Fast-Flow affinity chromatography with 6 × His tags attached to the protein. Subsequently, p-Aminophenyl Phosphoryl Choline Agarose resin affinity chromatography was used for tandem purification. The purified mouse CRP showed native pentamer and capabilities of PC binding. Moreover, the 6 × His tag provides a convenient tool for detecting the interactions of mouse CRP with ligands.
Collapse
Affiliation(s)
- Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Di Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Ke Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Xiao-Ping Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Jian-Min Lv
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Li Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| |
Collapse
|
7
|
Schneider NO, Tassoulas LJ, Zeng D, Laseke AJ, Reiter NJ, Wackett LP, Maurice MS. Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry 2020; 59:3258-3270. [PMID: 32786413 DOI: 10.1021/acs.biochem.0c00537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.
Collapse
Affiliation(s)
- Nicholas O Schneider
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lambros J Tassoulas
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Amanda J Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
8
|
Shin JH, Choi J, Jeon J, Kumar M, Lee J, Jeong WJ, Kim SR. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci Rep 2020; 10:12713. [PMID: 32728100 PMCID: PMC7391781 DOI: 10.1038/s41598-020-69620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella is a unicellular green microalga that has been used in fields such as bioenergy production and food supplementation. In this study, two promoters of N (nitrogen) deficiency-inducible Chlorella vulgaris N Deficiency Inducible (CvNDI) genes were isolated from Chlorella vulgaris UTEX 395. These promoters were used for the production of a recombinant protein, human granulocyte-colony stimulating factor (hG-CSF) in Chlorella vulgaris UTEX 395 and Chlorella sp. ArM0029B. To efficiently secrete the hG-CSF, the protein expression vectors incorporated novel signal peptides obtained from a secretomics analysis of Chlorella spp. After a stable transformation of those vectors with a codon-optimized hG-CSF sequence, hG-CSF polypeptides were successfully produced in the spent media of the transgenic Chlorella. To our knowledge, this is the first report of recombinant protein expression using endogenous gene components of Chlorella.
Collapse
Affiliation(s)
- Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jeongmin Jeon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Manu Kumar
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juhyeon Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Won-Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
9
|
Zhang K, Mohsin A, Dai Y, Ali MF, Chen Z, Zhuang Y, Chu J, Guo M. Role of a Two-Component Signal Transduction System RspA1/A2 in Regulating the Biosynthesis of Salinomycin in Streptomyces albus. Appl Biochem Biotechnol 2020; 193:1296-1310. [PMID: 32524351 DOI: 10.1007/s12010-020-03357-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
Abstract
The two-component system "AfsQ1/Q2" plays a crucial role to activate the production of antibiotics ACT, RED, and CDA through directly binding the promoters of pathway-specific activator genes actII-ORF4, redZ, and cdaR respectively when grown under glutamate-supplemented minimal medium in Streptomyces coelicolor. In this report, we demonstrated that the RspA1/A2 (a homologous protein of two-component system AfsQ1/Q2) plays a regulatory role in salinomycin biosynthesis in Streptomyces albus. Gene deletion and complementation experiments showed that the RspA1/A2 promoted salinomycin production but inhibited cell growth when cultured in YMG medium supplemented with 3% soybean oil. More importantly, RspA1/A2 strengthens salinomycin biosynthesis by directly affecting the transcription of the pathway-specific activator gene slnR. Meanwhile, RspA1/A2 plays a negative role in the regulation of nitrogen assimilation and urea decarboxylation by interacting with the promoters of genes gdhA, glnA, amtB, and SLNWT_1828/1829. Gene sigW is located downstream of rspA1/A2 and encodes an extracytoplasmic function sigma factor. Moreover, it negatively regulates the salinomycin biosynthesis and promotes cell growth, which antagonizes the function of RspA1/A2. In short, these useful findings are proved helpful to enrich the understanding of the regulatory pathways of antibiotic biosynthesis by an ECF σ factor-TCS signal transduction system in Streptomyces.
Collapse
Affiliation(s)
- Kuipu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yichen Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Muhammad Fahad Ali
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhongbing Chen
- Zhejiang Biok Biology Co., Ltd., Zhongguan Industrial Park, Deqing, Zhejiang, 313220, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
10
|
Zinia Zaukuu JL, Aouadi B, Lukács M, Bodor Z, Vitális F, Gillay B, Gillay Z, Friedrich L, Kovacs Z. Detecting Low Concentrations of Nitrogen-Based Adulterants in Whey Protein Powder Using Benchtop and Handheld NIR Spectrometers and the Feasibility of Scanning through Plastic Bag. Molecules 2020; 25:E2522. [PMID: 32481691 PMCID: PMC7321410 DOI: 10.3390/molecules25112522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022] Open
Abstract
Nitrogen-rich adulterants in protein powders present sensitivity challenges to conventional combustion methods of protein determination which can be overcome by near Infrared spectroscopy (NIRS). NIRS is a rapid analytical method with high sensitivity and non-invasive advantages. This study developed robust models using benchtop and handheld spectrometers to predict low concentrations of urea, glycine, taurine, and melamine in whey protein powder (WPP). Effectiveness of scanning samples through optical glass and polyethylene bags was also tested for the handheld NIRS. WPP was adulterated up to six concentration levels from 0.5% to 3% w/w. The two spectrometers were used to obtain three datasets of 819 diffuse reflectance spectra each that were pretreated before linear discriminant analysis (LDA) and regression (PLSR). Pretreatment was effective and revealed important absorption bands that could be correlated with the chemical properties of the mixtures. Benchtop NIR spectrometer showed the best results in LDA and PLSR but handheld NIR spectrometers showed comparatively good results. There were high prediction accuracies and low errors attesting to the robustness of the developed PLSR models using independent test set validation. Both the plastic bag and optical glass gave good results with accuracies depending on the adulterant of interest and can be used for field applications.
Collapse
Affiliation(s)
- John-Lewis Zinia Zaukuu
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - Balkis Aouadi
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - Mátyás Lukács
- Department of Quality Management, BioTech USA Ltd., 1033 Budapest, Hungary;
| | - Zsanett Bodor
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - Flóra Vitális
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - Biborka Gillay
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - Zoltan Gillay
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| | - László Friedrich
- Department of Refrigeration and Livestock, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary;
| | - Zoltan Kovacs
- Department of Physics and Control, Faculty of Food Science, Szent Istvan University, 1118 Budapest, Hungary or (J.-L.Z.Z.); (B.A.); (Z.B.); (F.V.); (B.G.); (Z.G.)
| |
Collapse
|
11
|
Liu Y, Yuan B, Peng L, Zhao J, Cheng B, Huang Y, Zheng X, Zhou Y, Xiang S, Zhu L, Wu Y. Single-particle analysis of urea amidolyase reveals its molecular mechanism. Protein Sci 2020; 29:1242-1249. [PMID: 32105377 DOI: 10.1002/pro.3847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/08/2022]
Abstract
Urea amidolyase (UA), a bifunctional enzyme that is widely distributed in bacteria, fungi, algae, and plants, plays a pivotal role in the recycling of nitrogen in the biosphere. Its substrate urea is ultimately converted to ammonium, via successive catalysis at the C-terminal urea carboxylase (UC) domain and followed by the N-terminal allophanate hydrolyse (AH) domain. Although our previous studies have shown that Kluyveromyces lactis UA (KlUA) functions efficiently as a homodimer, the architecture of the full-length enzyme remains unresolved. Thus how the biotin carboxyl carrier protein (BCCP) domain is transferred within the UC domain remains unclear. Here we report the structures of full-length KlUA in its homodimer form in three different functional states by negatively-stained single-particle electron microscopy. We report here that the ADP-bound structure with or without urea shows two possible locations of BCCP with preferred asymmetry, and that when BCCP is attached to the carboxyl transferase domain of one monomer, it is attached to the biotin carboxylase domain in the second domain. Based on this observation, we propose a BCCP-swinging model for biotin-dependent carboxylation mechanism of this enzyme.
Collapse
Affiliation(s)
- Ying Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang Peng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhua Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinxing Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuerong Zhou
- College of Marine and Biochemical Engineering, Fujian Normal University, Fuzhou, China
| | - Song Xiang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Li Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Phithakrotchanakoon C, Phaonakrop N, Roytrakul S, Tanapongpipat S, Roongsawang N. Protein secretion in wild-type and Othac1 mutant strains of thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656. Mol Biol Rep 2019; 47:461-468. [DOI: 10.1007/s11033-019-05149-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
|
13
|
A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS One 2018; 13:e0206949. [PMID: 30399173 PMCID: PMC6219798 DOI: 10.1371/journal.pone.0206949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 11/19/2022] Open
Abstract
Cyanuric acid is a common environmental contaminant and a metabolic intermediate in the catabolism of s-triazine compounds, including atrazine and other herbicides. Cyanuric acid is catabolized via a number of bacterial pathways, including one first identified in Pseudomonas sp. strain ADP, which is encoded by a single, five-gene operon (atzDGEHF) found on a self-transmissible plasmid. The discovery of two of the five genes (atzG and atzH) was reported in 2018 and although the function of atzG was determined, the role of atzH was unclear. Here, we present the first in vitro reconstruction of the complete, five-protein cyanuric acid catabolism pathway, which indicates that AtzH may be an amidase responsible for converting 1,3-dicarboxyurea (the AtzE product) to allophanate (the AtzF substrate). We have solved the AtzH structure (a DUF3225 protein from the NTF2 superfamily) and used it to predict the substrate-binding pocket. Site-directed mutagenesis experiments suggest that two residues (Tyr22 and Arg46) are needed for catalysis. We also show that atzH homologs are commonly found in Proteobacteria associated with homologs of the atzG and atzE genes. The genetic context of these atzG-atzE-atzH clusters imply that they have a role in the catabolism of nitrogenous compounds. Moreover, their presence in many genomes in the absence of homologs of atzD and atzF suggests that the atzG-atzE-atzH cluster may pre-date the evolution of the cyanuric acid catabolism operon.
Collapse
|