1
|
Zhang S, Du J, Lu M, Shang W, Du H, Wang C, Wen Z, Duan T, Xu W, Liu J, Du J, Chen D. Network pharmacology, molecular docking, and experimental verification reveal the mechanism of Yi-Shen-Hua-Shi granules treating acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025:119320. [PMID: 39755185 DOI: 10.1016/j.jep.2025.119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function. AIM OF THE STUDY To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI. MATERIALS AND METHODS Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted. The AKI model was induced by sepsis using the cecal ligation and puncture (CLP) technique. Prior to the operation, YSHSG was administered intragastrically once daily for 1 week. Blood and kidney tissues were collected 48 h post-CLP to verify the network pharmacology analysis. RESULTS The core target proteins of YSHSG in the treatment of sepsis-induced AKI include AKT1, JUN, IL6, PTGS2, NFKBIA, MAPK3, Caspase-3 and MMP9, which were further confirmed by molecular docking. Pathway analyses such as Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) show that YSHSG plays a role in protecting the kidneys from sepsis-induced AKI through the PI3K/AKT, TNF, and IL17 signaling pathways. These findings were validated using qPCR and western blotting. In vivo experiments demonstrated that YSHSG inhibits the activation of TNF and IL17 signaling pathways while protecting against deactivation of the PI3K/AKT signaling pathway in sepsis-induced AKI. YSHSG also exhibits an effect on attenuating inflammation response and pyroptosis processes associated with the PI3K/AKT, TNF, and IL17 signaling pathways. CONCLUSION YSHSG mitigated sepsis-induced AKI by influencing the PI3K/AKT, TNF, and IL17 signaling pathways associated with inflammation and pyroptosis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jiankui Du
- Department of Physiology, Navy Medical University, No.800 Xiangyin Road, Shanghai 200433, China
| | - Minmin Lu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Changnan Wang
- School of Life Sciences, Shanghai University. No.99 Shangda Road, Shanghai 200444, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Tingting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, China
| | - Wei Xu
- Department of Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai 200011, China.
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Jiankui Du
- Department of Physiology, Navy Medical University, No.800 Xiangyin Road, Shanghai 200433, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China.
| |
Collapse
|
2
|
Pan X, Zhu R, Peng J, Liu H, Pan W, Jin Y, Pei J, Zhang L. Molecular mechanisms and potential targets of lycopene for alleviating renal ischemia-reperfusion injury revealed by network pharmacology and animal experiments. Int Immunopharmacol 2024; 143:113421. [PMID: 39442187 DOI: 10.1016/j.intimp.2024.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Renal IRI is one of the leading causes of AKI. How to effectively mitigate renal IRI is important for the recovery of renal function. The regulatory mechanism of lycopene, a natural antioxidant, in renal IRI is currently unknown. Therefore, we utilized network pharmacology and animal experiments to explore the possible mechanisms and potential targets of lycopene for alleviating renal IRI. METHODS We obtained lycopene-regulated genes and renal IRI-related genes from the CTD database and GeneCards database, respectively. Subsequently, the two were intersected and the intersecting genes we defined as lycopene-regulated genes in renal IRI. Next, we explored their potential biological functions and mechanisms through enrichment analysis. Meanwhile, we constructed a rat renal IRI model and validated the protective effects of lycopene and related mechanisms. To further explore the Hub genes regulated by lycopene, we constructed a PPI protein interactions network and characterized the Hub genes using Cytoscape software. We also verified the expression of Hub genes using animal experiments and molecular docking techniques. Finally, we constructed TF-Hub gene and miRNA-Hub gene regulatory networks. RESULTS We obtained a total of 255 lycopene-regulated genes and 327 renal IRI-related genes. The enrichment analysis revealed that they were closely related to the regulation of oxidative stress as well as the regulation of inflammatory factors. At the same time, the MAPK signaling pathway was significantly enriched. Next, we found in animal experiments that lycopene significantly alleviated the level of oxidative stress and inflammation during renal IRI, and had a protective effect on kidney damage. Also, we found that this protective effect may be achieved by inhibiting the MAPK signaling pathway. Next, we identified a total of five Hub genes using Cytoscape software: TNF, AKT1, MAPK3, IL6 and CASP3. Both animal experiments and molecular docking techniques demonstrated that lycopene can effectively regulate the expression of Hub genes. Finally, our constructed TF-Hub gene and miRNA-Hub gene regulatory network provide a theoretical basis for further regulation of Hub genes in follow-up. CONCLUSIONS This study suggests that lycopene is a promising option in mitigating renal IRI. Lycopene may exert protective effects by inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xingyu Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Rong Zhu
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jinpu Peng
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongli Liu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Wenqing Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Yuhan Jin
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Jun Pei
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Li Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China.
| |
Collapse
|
3
|
Wang B, Zheng Z, Chen L, Zhang W, He Y, Wu B, Ji R. Transcriptomics reveals key regulatory pathways and genes associated with skin diseases induced by face paint usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164374. [PMID: 37236445 DOI: 10.1016/j.scitotenv.2023.164374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The use of face paint cosmetics can cause skin diseases in opera performers due to the presence of heavy metals and other toxic ingredients in the cosmetics. However, the underlying molecular mechanism for these diseases remains unknown. Here we examined the transcriptome gene profile of human skin keratinocytes exposed to artificial sweat extracts of face paints, and identified the key regulatory pathways and genes, using RNA sequencing technique. Bioinformatics analyses suggested that the face paint exposure induced the differentially expression of 1531 genes and enriched inflammation-relevant TNF and IL-17 signaling pathways after just 4 h of exposure. Inflammation-relevant genes CREB3L3, FOS, FOSB, JUN, TNF, and NFKBIA were identified as the potential regulatory genes, and SOCS3 capable to prevent inflammation-induced carcinogenesis as the hub-bottleneck gene. Long-term exposure (24 h) could exacerbate inflammation, accompanied by interference in cellular metabolism pathways, and the potential regulatory genes (ATP1A1, ATP1B1, ATP1B2, FXYD2, IL6, and TNF) and hub-bottleneck genes (JUNB and TNFAIP3) were all related to inflammation induction and other adverse responses. We proposed that the exposure to face paint might cause the inflammatory factors TNF and IL-17, which are encoded by the genes TNF and IL17, to bind to receptors and activate TNF and IL-17 signaling pathways, leading to the expression of cell proliferation factors (CREB and AP-1) and proinflammatory mediators including transcription factors (FOS, JUN, and JUNB), inflammatory factors (TNF-α and IL6), and intracellular signaling factors (TNFAIP3). This finally resulted in cell inflammation, apoptosis, and other skin diseases. TNF was identified as the key regulator and connector in all the enriched signaling pathways. Our study provides the first insights into the cytotoxicity mechanism of face paints to skin cells and highlights the need for stricter regulations in face paint safety.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaohao Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Ay A, Alkanli N, Ustundag S. Investigation of the Relationship Between IL-18 (- 607 C/A), IL-18 (- 137 G/C), and MMP-2 (- 1306 C/T) Gene Variations and Serum Copper and Zinc Levels in Patients Diagnosed with Chronic Renal Failure. Biol Trace Elem Res 2022; 200:2040-2052. [PMID: 34263421 DOI: 10.1007/s12011-021-02828-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The aim of this study is to investigate the relationship between IL-18 (- 607 C/A), IL-18 (- 137 G/C), and MMP-2 (- 1306 C/T) gene variations and serum trace element levels in patients diagnosed with CRF. Genotype distributions of IL-18 (- 607 C/A, - 137 G/C) gene variations were determined by polymerase chain reaction (PCR) method. PCR-restriction fragment length polymorphism (RFLP) methods were used to determine the MMP-2 (- 1306 C/T) gene variation genotype distributions. Serum trace element levels were determined by atomic absorption spectrophotometer method. A significant difference was found between the CRF patient and healthy control groups in terms of genotype distributions of IL-18 (- 607 C/A) and MMP-2 (- 1306 C/T) gene variations (p < 0.05). The significant difference was found between the patient and control groups in terms of serum copper and zinc levels and copper/zinc ratio (p < 0.05). The significant difference was detected between patient and control groups in terms of copper and zinc levels and copper/zinc ratio according to IL-18 (- 607 C/A), IL-18 (- 137 G/C), and MMP-2 (- 1306 C/T) gene variations and genotype distributions (p < 0.05). In addition, significant difference was determined in terms of serum copper and zinc levels and copper/zinc ratio according to haplotypes of IL-18 (- 607 C/A), IL-18 (- 137 G/C), and MMP-2 (- 1306 C/T) gene variations between patient and control groups (p < 0.05). In conclusion, evaluation of IL-18 (- 607 C/A, - 137 G/C) and MMP-2 (- 1306 C/T) gene variations and serum trace element levels together is extremely important in terms of obtaining important biomarkers in CRF early diagnosis and progression.
Collapse
Affiliation(s)
- Arzu Ay
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | - Nevra Alkanli
- Department of Biophysics, Faculty of Medicine, Haliç University, Istanbul, Turkey.
| | - Sedat Ustundag
- Department of Nephrology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
5
|
Identification of key biomarkers and signaling pathways and analysis of their association with immune cells in immunoglobulin A nephropathy. Cent Eur J Immunol 2022; 47:189-205. [PMID: 36817268 PMCID: PMC9896983 DOI: 10.5114/ceji.2022.119867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Immunoglobulin A nephropathy (IgAN) is the most common glomerular disease worldwide, with a poor prognosis. The aim of our study was to identify key biomarkers and their associations with immune cells to aid in the study of IgAN pathology and immunotherapy. Material and methods The data of IgAN were downloaded from a public database. The metaMA package and limma package were used to identify differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs), respectively. Biological functions of the DEmRNAs were analyzed. Machine learning was used to screen the mRNA biomarkers of IgAN. Pearson's correlation coefficient was used to analyze the correlation between mRNA biomarkers, immune cells and signaling pathways. Moreover, we constructed a miRNAs-mRNAs targeted regulatory network. Finally, we performed in vitro validation of the identified miRNAs and mRNAs. Results 1205 DEmRNAs and 125 DEmiRNAs were identified. In gene set enrichment analysis (GSEA), tumor necrosis factor α (TNF-α) signaling via nuclear factor κB (NF-κB), apoptosis and MTORC-1 signaling were inhibited in IgAN. 8 mRNA biomarkers were screened by machine learning. In addition, the distribution of 8 immune cell types was found to be significantly different between normal controls and IgAN by difference analysis. Pearson correlation coefficient analysis demonstrated that AKAP8L was significantly negatively correlated with CD4+ memory T-cells. AKAP8L was also significantly negatively correlated with TNF-α signaling via NF-κB, apoptosis, and MTORC-1 signaling. Subsequently, 5 mRNA biomarkers predicted corresponding negative regulatory miRNAs. Conclusions The identification of 8 important biomarkers and their correlation with immune cells and biological signaling pathways provides new ideas for further study of IgAN.
Collapse
|
6
|
Al-Amodi HS, Abdelsattar S, Kasemy ZA, Bedair HM, Elbarbary HS, Kamel HFM. Potential Value of TNF-α (-376 G/A) Polymorphism and Cystatin C (CysC) in the Diagnosis of Sepsis Associated Acute Kidney Injury (S-AK I) and Prediction of Mortality in Critically Ill patients. Front Mol Biosci 2021; 8:751299. [PMID: 34692772 PMCID: PMC8526786 DOI: 10.3389/fmolb.2021.751299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis Associated Kidney Injury represents a major health concern as it is frequently associated with increased risk of mortality and morbidity. We aimed to evaluate the potential value of TNF-α (-376 G/A) and cystatin C in the diagnosis of S-AKI and prediction of mortality in critically ill patients. This study included 200 critically ill patients and 200 healthy controls. Patients were categorized into 116 with acute septic shock and 84 with sepsis, from which 142 (71%) developed S-AKI. Genotyping of TNF-α (-376 G/A) was performed by RT-PCR and serum CysC was assessed by Enzyme Linked Immunosorbent Assay. Our results showed a highly significant difference in the genotype frequencies of TNF-α (-376 G/A) SNP between S-AKI and non-AKI patients (p < 0.001). Additionally, sCysC levels were significantly higher in the S-AKI group (p = 0.011). The combination of both sCysC and TNF-α (-376 G/A) together had a better diagnostic ability for S-AKI than sCysC alone (AUC = 0.610, 0.838, respectively). Both GA and AA genotypes were independent predictors of S-AKI (p= < 0.001, p = 0.002 respectively). Additionally, sCysC was significantly associated with the risk of S-AKI development (Odds Ratio = 1.111). Both genotypes and sCysC were significant predictors of non-survival (p < 0.001), suggesting their potential role in the diagnosis of S-AKI and prediction of mortality.
Collapse
Affiliation(s)
- Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Zeinab A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
| | - Hanan M. Bedair
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Hany S. Elbarbary
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hala F. M. Kamel
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021; 10:jcm10143039. [PMID: 34300206 PMCID: PMC8307812 DOI: 10.3390/jcm10143039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a widely held concern related to a substantial burden of morbidity, mortality and expenditure in the healthcare system. AKI is not a simple illness but a complex conglomeration of syndromes that often occurs as part of other syndromes in its wide clinical spectrum of the disease. Genetic factors have been suggested as potentially responsible for its susceptibility and severity. As there is no current cure nor an effective treatment other than generally accepted supportive measures and renal replacement therapy, updated knowledge of the genetic implications may serve as a strategic tactic to counteract its dire consequences. Further understanding of the genetics that predispose AKI may shed light on novel approaches for the prevention and treatment of this condition. This review attempts to address the role of key genes in the appearance and development of AKI, providing not only a comprehensive update of the intertwined process involved but also identifying specific markers that could serve as precise targets for further AKI therapies.
Collapse
Affiliation(s)
- Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiovascular Surgery, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiology, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Hematology and Hemotherapy, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. López-Hernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Institute of Biomedical Research of Salamnca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Departmental Building Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pablo Jorge-Monjas
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
8
|
Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Malik MZ, Ishrat R. Deciphering key genes in cardio-renal syndrome using network analysis. Bioinformation 2021; 17:86-100. [PMID: 34393423 PMCID: PMC8340714 DOI: 10.6026/97320630017086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-1100067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
9
|
Ethnicity-Stratified Analysis of the Association between TNF- α Genetic Polymorphisms and Acute Kidney Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5262351. [PMID: 33083469 PMCID: PMC7556080 DOI: 10.1155/2020/5262351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Background Several studies have reported conflicting findings regarding the association between tumor necrosis factor-alpha (TNF-α) genetic polymorphisms and acute kidney injury (AKI). Therefore, we performed this meta-analysis to further investigate whether TNF-α variants are related to AKI susceptibility. Methods A comprehensive search of observational studies on the association of TNF-α polymorphism with AKI susceptibility was conducted in the PubMed, Cochrane, and Embase databases through February 10, 2020. Pooled odds ratios (ORs) and 95% corresponding confidence intervals (95% CIs) were analyzed to evaluate the strength of the relationship. Results A total of 8 studies involving 6694 patients (2559 cases and 4135 controls) were included. Pooled analysis showed a trend of increased risk between the TNF-α rs1800629 variant and AKI (A vs. G: OR [95%CI] = 1.33 [0.98‐1.81]) among the overall population. Ethnicity-stratified analysis indicated that the TNF-α rs1800629 variant was a risk factor for Asians (OR [95%CI] = 1.93 [1.59‐2.35]) while it is not for Caucasians (OR [95%CI] = 1.04 [0.91‐1.20]). Additionally, we also found that TNF-α rs1799964 polymorphism was observed to have a significant relationship with AKI risk in Asian patients (C vs. T, OR [95%CI] = 1.26 [1.11‐1.43]). Conclusions The TNF rs1800629 polymorphism exhibited a trend toward AKI susceptibility with ethnic differences. The relationship was found to be significant among the Asian population, but not among those of Caucasian origin. Additionally, the TNF-α rs1799964 polymorphism was also related to a significantly increased risk of AKI in Asians.
Collapse
|